Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4781, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970991

RESUMO

The observed global net land carbon sink is captured by current land models. All models agree that atmospheric CO2 and nitrogen deposition driven gains in carbon stocks are partially offset by climate and land-use and land-cover change (LULCC) losses. However, there is a lack of consensus in the partitioning of the sink between vegetation and soil, where models do not even agree on the direction of change in carbon stocks over the past 60 years. This uncertainty is driven by plant productivity, allocation, and turnover response to atmospheric CO2 (and to a smaller extent to LULCC), and the response of soil to LULCC (and to a lesser extent climate). Overall, differences in turnover explain ~70% of model spread in both vegetation and soil carbon changes. Further analysis of internal plant and soil (individual pools) cycling is needed to reduce uncertainty in the controlling processes behind the global land carbon sink.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Carbono , Dióxido de Carbono/análise , Ecossistema , Plantas , Solo , Incerteza
2.
Science ; 373(6562): eabg7484, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34554812

RESUMO

Our study suggests that the global CO2 fertilization effect (CFE) on vegetation photosynthesis has declined during the past four decades. The Comments suggest that the temporal inconsistency in AVHRR data and the attribution method undermine the results' robustness. Here, we provide additional evidence that these arguments did not affect our finding and that the global decline in CFE is robust.


Assuntos
Dióxido de Carbono , Fotossíntese , Fertilização
4.
Global Biogeochem Cycles ; 34(12): e2020GB006613, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33380772

RESUMO

Variability in climate exerts a strong influence on vegetation productivity (gross primary productivity; GPP), and therefore has a large impact on the land carbon sink. However, no direct observations of global GPP exist, and estimates rely on models that are constrained by observations at various spatial and temporal scales. Here, we assess the consistency in GPP from global products which extend for more than three decades; two observation-based approaches, the upscaling of FLUXNET site observations (FLUXCOM) and a remote sensing derived light use efficiency model (RS-LUE), and from a suite of terrestrial biosphere models (TRENDYv6). At local scales, we find high correlations in annual GPP among the products, with exceptions in tropical and high northern latitudes. On longer time scales, the products agree on the direction of trends over 58% of the land, with large increases across northern latitudes driven by warming trends. Further, tropical regions exhibit the largest interannual variability in GPP, with both rainforests and savannas contributing substantially. Variability in savanna GPP is likely predominantly driven by water availability, although temperature could play a role via soil moisture-atmosphere feedbacks. There is, however, no consensus on the magnitude and driver of variability of tropical forests, which suggest uncertainties in process representations and underlying observations remain. These results emphasize the need for more direct long-term observations of GPP along with an extension of in situ networks in underrepresented regions (e.g., tropical forests). Such capabilities would support efforts to better validate relevant processes in models, to more accurately estimate GPP.

5.
Science ; 370(6522): 1295-1300, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33303610

RESUMO

The enhanced vegetation productivity driven by increased concentrations of carbon dioxide (CO2) [i.e., the CO2 fertilization effect (CFE)] sustains an important negative feedback on climate warming, but the temporal dynamics of CFE remain unclear. Using multiple long-term satellite- and ground-based datasets, we showed that global CFE has declined across most terrestrial regions of the globe from 1982 to 2015, correlating well with changing nutrient concentrations and availability of soil water. Current carbon cycle models also demonstrate a declining CFE trend, albeit one substantially weaker than that from the global observations. This declining trend in the forcing of terrestrial carbon sinks by increasing amounts of atmospheric CO2 implies a weakening negative feedback on the climatic system and increased societal dependence on future strategies to mitigate climate warming.


Assuntos
Ciclo do Carbono , Dióxido de Carbono/metabolismo , Aquecimento Global , Fotossíntese , Atmosfera/química , Dióxido de Carbono/análise
6.
Sci Data ; 7(1): 225, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647314

RESUMO

The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.

7.
Glob Chang Biol ; 26(7): 3997-4012, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32427397

RESUMO

Gaps in our current understanding and quantification of biomass carbon stocks, particularly in tropics, lead to large uncertainty in future projections of the terrestrial carbon balance. We use the recently published GlobBiomass data set of forest above-ground biomass (AGB) density for the year 2010, obtained from multiple remote sensing and in situ observations at 100 m spatial resolution to evaluate AGB estimated by nine dynamic global vegetation models (DGVMs). The global total forest AGB of the nine DGVMs is 365 ± 66 Pg C, the spread corresponding to the standard deviation between models, compared to 275 Pg C with an uncertainty of ~13.5% from GlobBiomass. Model-data discrepancy in total forest AGB can be attributed to their discrepancies in the AGB density and/or forest area. While DGVMs represent the global spatial gradients of AGB density reasonably well, they only have modest ability to reproduce the regional spatial gradients of AGB density at scales below 1000 km. The 95th percentile of AGB density (AGB95 ) in tropics can be considered as the potential maximum of AGB density which can be reached for a given annual precipitation. GlobBiomass data show local deficits of AGB density compared to the AGB95 , particularly in transitional and/or wet regions in tropics. We hypothesize that local human disturbances cause more AGB density deficits from GlobBiomass than from DGVMs, which rarely represent human disturbances. We then analyse empirical relationships between AGB density deficits and forest cover changes, population density, burned areas and livestock density. Regression analysis indicated that more than 40% of the spatial variance of AGB density deficits in South America and Africa can be explained; in Southeast Asia, these factors explain only ~25%. This result suggests TRENDY v6 DGVMs tend to underestimate biomass loss from diverse and widespread anthropogenic disturbances, and as a result overestimate turnover time in AGB.


Assuntos
Florestas , Árvores , África , Biomassa , Humanos , América do Sul
8.
Glob Chang Biol ; 26(8): 4462-4477, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32415896

RESUMO

Changing amplitude of the seasonal cycle of atmospheric CO2 (SCA) in the northern hemisphere is an emerging carbon cycle property. Mauna Loa (MLO) station (20°N, 156°W), which has the longest continuous northern hemisphere CO2 record, shows an increasing SCA before the 1980s (p < .01), followed by no significant change thereafter. We analyzed the potential driving factors of SCA slowing-down, with an ensemble of dynamic global vegetation models (DGVMs) coupled with an atmospheric transport model. We found that slowing-down of SCA at MLO is primarily explained by response of net biome productivity (NBP) to climate change, and by changes in atmospheric circulations. Through NBP, climate change increases SCA at MLO before the 1980s and decreases it afterwards. The effect of climate change on the slowing-down of SCA at MLO is mainly exerted by intensified drought stress acting to offset the acceleration driven by CO2 fertilization. This challenges the view that CO2 fertilization is the dominant cause of emergent SCA trends at northern sites south of 40°N. The contribution of agricultural intensification on the deceleration of SCA at MLO was elusive according to land-atmosphere CO2 flux estimated by DGVMs and atmospheric inversions. Our results also show the necessity to adequately account for changing circulation patterns in understanding carbon cycle dynamics observed from atmospheric observations and in using these observations to benchmark DGVMs.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Animais , Atmosfera , Mudança Climática , Ecossistema , Estações do Ano
9.
Glob Chang Biol ; 26(6): 3368-3383, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32125754

RESUMO

Understanding changes in terrestrial carbon balance is important to improve our knowledge of the regional carbon cycle and climate change. However, evaluating regional changes in the terrestrial carbon balance is challenging due to the lack of surface flux measurements. This study reveals that the terrestrial carbon uptake over the Republic of Korea has been enhanced from 1999 to 2017 by analyzing long-term atmospheric CO2 concentration measurements at the Anmyeondo Station (36.53°N, 126.32°E) located in the western coast. The influence of terrestrial carbon flux on atmospheric CO2 concentrations (ΔCO2 ) is estimated from the difference of CO2 concentrations that were influenced by the land sector (through easterly winds) and the Yellow Sea sector (through westerly winds). We find a significant trend in ΔCO2 of -4.75 ppm per decade (p < .05) during the vegetation growing season (May through October), suggesting that the regional terrestrial carbon uptake has increased relative to the surrounding ocean areas. Combined analysis with satellite measured normalized difference vegetation index and gross primary production shows that the enhanced carbon uptake is associated with significant nationwide increases in vegetation and its production. Process-based terrestrial model and inverse model simulations estimate that regional terrestrial carbon uptake increases by up to 18.9 and 8.0 Tg C for the study period, accounting for 13.4% and 5.7% of the average annual domestic carbon emissions, respectively. Atmospheric chemical transport model simulations indicate that the enhanced terrestrial carbon sink is the primary reason for the observed ΔCO2 trend rather than anthropogenic emissions and atmospheric circulation changes. Our results highlight the fact that atmospheric CO2 measurements could open up the possibility of detecting regional changes in the terrestrial carbon cycle even where anthropogenic emissions are not negligible.


Assuntos
Dióxido de Carbono/análise , Carbono , Ciclo do Carbono , Sequestro de Carbono , Ecossistema , República da Coreia
10.
Glob Chang Biol ; 25(2): 640-659, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30414347

RESUMO

Our understanding and quantification of global soil nitrous oxide (N2 O) emissions and the underlying processes remain largely uncertain. Here, we assessed the effects of multiple anthropogenic and natural factors, including nitrogen fertilizer (N) application, atmospheric N deposition, manure N application, land cover change, climate change, and rising atmospheric CO2 concentration, on global soil N2 O emissions for the period 1861-2016 using a standard simulation protocol with seven process-based terrestrial biosphere models. Results suggest global soil N2 O emissions have increased from 6.3 ± 1.1 Tg N2 O-N/year in the preindustrial period (the 1860s) to 10.0 ± 2.0 Tg N2 O-N/year in the recent decade (2007-2016). Cropland soil emissions increased from 0.3 Tg N2 O-N/year to 3.3 Tg N2 O-N/year over the same period, accounting for 82% of the total increase. Regionally, China, South Asia, and Southeast Asia underwent rapid increases in cropland N2 O emissions since the 1970s. However, US cropland N2 O emissions had been relatively flat in magnitude since the 1980s, and EU cropland N2 O emissions appear to have decreased by 14%. Soil N2 O emissions from predominantly natural ecosystems accounted for 67% of the global soil emissions in the recent decade but showed only a relatively small increase of 0.7 ± 0.5 Tg N2 O-N/year (11%) since the 1860s. In the recent decade, N fertilizer application, N deposition, manure N application, and climate change contributed 54%, 26%, 15%, and 24%, respectively, to the total increase. Rising atmospheric CO2 concentration reduced soil N2 O emissions by 10% through the enhanced plant N uptake, while land cover change played a minor role. Our estimation here does not account for indirect emissions from soils and the directed emissions from excreta of grazing livestock. To address uncertainties in estimating regional and global soil N2 O emissions, this study recommends several critical strategies for improving the process-based simulations.


Assuntos
Mudança Climática , Gases de Efeito Estufa/análise , Desenvolvimento Industrial , Óxido Nitroso/análise , Solo/química , Poluentes Atmosféricos/análise , Modelos Teóricos , Fatores de Tempo , Incerteza
11.
Artigo em Inglês | MEDLINE | ID: mdl-30297465

RESUMO

Evaluating the response of the land carbon sink to the anomalies in temperature and drought imposed by El Niño events provides insights into the present-day carbon cycle and its climate-driven variability. It is also a necessary step to build confidence in terrestrial ecosystems models' response to the warming and drying stresses expected in the future over many continents, and particularly in the tropics. Here we present an in-depth analysis of the response of the terrestrial carbon cycle to the 2015/2016 El Niño that imposed extreme warming and dry conditions in the tropics and other sensitive regions. First, we provide a synthesis of the spatio-temporal evolution of anomalies in net land-atmosphere CO2 fluxes estimated by two in situ measurements based on atmospheric inversions and 16 land-surface models (LSMs) from TRENDYv6. Simulated changes in ecosystem productivity, decomposition rates and fire emissions are also investigated. Inversions and LSMs generally agree on the decrease and subsequent recovery of the land sink in response to the onset, peak and demise of El Niño conditions and point to the decreased strength of the land carbon sink: by 0.4-0.7 PgC yr-1 (inversions) and by 1.0 PgC yr-1 (LSMs) during 2015/2016. LSM simulations indicate that a decrease in productivity, rather than increase in respiration, dominated the net biome productivity anomalies in response to ENSO throughout the tropics, mainly associated with prolonged drought conditions.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


Assuntos
Atmosfera/análise , Ciclo do Carbono , Ecossistema , El Niño Oscilação Sul , Sequestro de Carbono , Modelos Teóricos
12.
Glob Chang Biol ; 23(11): 4854-4872, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28513916

RESUMO

Spatial patterns and temporal trends of nitrogen (N) and phosphorus (P) deposition are important for quantifying their impact on forest carbon (C) uptake. In a first step, we modeled historical and future change in the global distributions of the atmospheric deposition of N and P from the dry and wet deposition of aerosols and gases containing N and P. Future projections were compared between two scenarios with contrasting aerosol emissions. Modeled fields of N and P deposition and P concentration were evaluated using globally distributed in situ measurements. N deposition peaked around 1990 in European forests and around 2010 in East Asian forests, and both increased sevenfold relative to 1850. P deposition peaked around 2010 in South Asian forests and increased 3.5-fold relative to 1850. In a second step, we estimated the change in C storage in forests due to the fertilization by deposited N and P (∆Cν dep ), based on the retention of deposited nutrients, their allocation within plants, and C:N and C:P stoichiometry. ∆Cν dep for 1997-2013 was estimated to be 0.27 ± 0.13 Pg C year-1 from N and 0.054 ± 0.10 Pg C year-1 from P, contributing 9% and 2% of the terrestrial C sink, respectively. Sensitivity tests show that uncertainty of ∆Cν dep was larger from P than from N, mainly due to uncertainty in the fraction of deposited P that is fixed by soil. ∆CPdep was exceeded by ∆CNdep over 1960-2007 in a large area of East Asian and West European forests due to a faster growth in N deposition than P. Our results suggest a significant contribution of anthropogenic P deposition to C storage, and additional sources of N are needed to support C storage by P in some Asian tropical forests where the deposition rate increased even faster for P than for N.


Assuntos
Sequestro de Carbono , Florestas , Nitrogênio/metabolismo , Fósforo/metabolismo , Plantas/metabolismo , Modelos Biológicos , Estações do Ano , Fatores de Tempo
13.
J Hydrometeorol ; 17(6): 1705-1723, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29630073

RESUMO

The PALS Land sUrface Model Benchmarking Evaluation pRoject (PLUMBER) illustrated the value of prescribing a priori performance targets in model intercomparisons. It showed that the performance of turbulent energy flux predictions from different land surface models, at a broad range of flux tower sites using common evaluation metrics, was on average worse than relatively simple empirical models. For sensible heat fluxes, all land surface models were outperformed by a linear regression against downward shortwave radiation. For latent heat flux, all land surface models were outperformed by a regression against downward shortwave, surface air temperature and relative humidity. These results are explored here in greater detail and possible causes are investigated. We examine whether particular metrics or sites unduly influence the collated results, whether results change according to time-scale aggregation and whether a lack of energy conservation in flux tower data gives the empirical models an unfair advantage in the intercomparison. We demonstrate that energy conservation in the observational data is not responsible for these results. We also show that the partitioning between sensible and latent heat fluxes in LSMs, rather than the calculation of available energy, is the cause of the original findings. Finally, we present evidence suggesting that the nature of this partitioning problem is likely shared among all contributing LSMs. While we do not find a single candidate explanation for why land surface models perform poorly relative to empirical benchmarks in PLUMBER, we do exclude multiple possible explanations and provide guidance on where future research should focus.

14.
Glob Chang Biol ; 22(1): 338-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26207894

RESUMO

Several lines of evidence point to European managed grassland ecosystems being a sink of carbon. In this study, we apply ORCHIDEE-GM a process-based carbon cycle model that describes specific management practices of pastures and the dynamics of carbon cycling in response to changes in climatic and biogeochemical drivers. The model is used to simulate changes in the carbon balance [i.e., net biome production (NBP)] of European grasslands over 1991-2010 on a 25 km × 25 km grid. The modeled average trend in NBP is 1.8-2.0 g C m(-2)  yr(-2) during the past two decades. Attribution of this trend suggests management intensity as the dominant driver explaining NBP trends in the model (36-43% of the trend due to all drivers). A major change in grassland management intensity has occurred across Europe resulting from reduced livestock numbers. This change has 'inadvertently' enhanced soil C sequestration and reduced N2 O and CH4 emissions by 1.2-1.5 Gt CO2 -equivalent, offsetting more than 7% of greenhouse gas emissions in the whole European agricultural sector during the period 1991-2010. Land-cover change, climate change and rising CO2 also make positive and moderate contributions to the NBP trend (between 24% and 31% of the trend due to all drivers). Changes in nitrogen addition (including fertilization and atmospheric deposition) are found to have only marginal net effect on NBP trends. However, this may not reflect reality because our model has only a very simple parameterization of nitrogen effects on photosynthesis. The sum of NBP trends from each driver is larger than the trend obtained when all drivers are varied together, leaving a residual - nonattributed - term (22-26% of the trend due to all drivers) indicating negative interactions between drivers.


Assuntos
Agricultura/métodos , Ciclo do Carbono , Mudança Climática , Pradaria , Poluição do Ar , Animais , Carbono/química , Dióxido de Carbono , Europa (Continente) , Gado , Modelos Teóricos , Nitrogênio/química , Solo/química
15.
Glob Chang Biol ; 21(10): 3748-61, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26059550

RESUMO

The greenhouse gas (GHG) balance of European grasslands (EU-28 plus Norway and Switzerland), including CO2 , CH4 and N2 O, is estimated using the new process-based biogeochemical model ORCHIDEE-GM over the period 1961-2010. The model includes the following: (1) a mechanistic representation of the spatial distribution of management practice; (2) management intensity, going from intensively to extensively managed; (3) gridded simulation of the carbon balance at ecosystem and farm scale; and (4) gridded simulation of N2 O and CH4 emissions by fertilized grassland soils and livestock. The external drivers of the model are changing animal numbers, nitrogen fertilization and deposition, land-use change, and variable CO2 and climate. The carbon balance of European grassland (NBP) is estimated to be a net sink of 15 ± 7 g C m(-2 ) year(-1) during 1961-2010, equivalent to a 50-year continental cumulative soil carbon sequestration of 1.0 ± 0.4 Pg C. At the farm scale, which includes both ecosystem CO2 fluxes and CO2 emissions from the digestion of harvested forage, the net C balance is roughly halved, down to a small sink, or nearly neutral flux of 8 g C m(-2 ) year(-1) . Adding CH4 and N2 O emissions to net ecosystem exchange to define the ecosystem-scale GHG balance, we found that grasslands remain a net GHG sink of 19 ± 10 g C-CO2 equiv. m(-2 ) year(-1) , because the CO2 sink offsets N2 O and grazing animal CH4 emissions. However, when considering the farm scale, the GHG balance (NGB) becomes a net GHG source of -50 g C-CO2 equiv. m(-2 ) year(-1) . ORCHIDEE-GM simulated an increase in European grassland NBP during the last five decades. This enhanced NBP reflects the combination of a positive trend of net primary production due to CO2 , climate and nitrogen fertilization and the diminishing requirement for grass forage due to the Europe-wide reduction in livestock numbers.


Assuntos
Poluição do Ar/análise , Ciclo do Carbono , Conservação dos Recursos Naturais , Pradaria , Europa (Continente) , Gases/análise , Efeito Estufa , Modelos Biológicos , Modelos Químicos , Estações do Ano
16.
PLoS One ; 10(5): e0127554, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26018186

RESUMO

About 25% of European livestock intake is based on permanent and sown grasslands. To fulfill rising demand for animal products, an intensification of livestock production may lead to an increased consumption of crop and compound feeds. In order to preserve an economically and environmentally sustainable agriculture, a more forage based livestock alimentation may be an advantage. However, besides management, grassland productivity is highly vulnerable to climate (i.e., temperature, precipitation, CO2 concentration), and spatial information about European grassland productivity in response to climate change is scarce. The process-based vegetation model ORCHIDEE-GM, containing an explicit representation of grassland management (i.e., herbage mowing and grazing), is used here to estimate changes in potential productivity and potential grass-fed ruminant livestock density across European grasslands over the period 1961-2010. Here "potential grass-fed ruminant livestock density" denotes the maximum density of livestock that can be supported by grassland productivity in each 25 km × 25 km grid cell. In reality, livestock density could be higher than potential (e.g., if additional feed is supplied to animals) or lower (e.g., in response to economic factors, pedo-climatic and biotic conditions ignored by the model, or policy decisions that can for instance reduce livestock numbers). When compared to agricultural statistics (Eurostat and FAOstat), ORCHIDEE-GM gave a good reproduction of the regional gradients of annual grassland productivity and ruminant livestock density. The model however tends to systematically overestimate the absolute values of productivity in most regions, suggesting that most grid cells remain below their potential grassland productivity due to possible nutrient and biotic limitations on plant growth. When ORCHIDEE-GM was run for the period 1961-2010 with variable climate and rising CO2, an increase of potential annual production (over 3%) per decade was found: 97% of this increase was attributed to the rise in CO2, -3% to climate trends and 15% to trends in nitrogen fertilization and deposition. When compared with statistical data, ORCHIDEE-GM captures well the observed phase of climate-driven interannual variability in grassland production well, whereas the magnitude of the interannual variability in modeled productivity is larger than the statistical data. Regional grass-fed livestock numbers can be reproduced by ORCHIDEE-GM based on its simple assumptions and parameterization about productivity being the only limiting factor to define the sustainable number of animals per unit area. Causes for regional model-data misfits are discussed, including uncertainties in farming practices (e.g., nitrogen fertilizer application, and mowing and grazing intensity) and in ruminant diet composition, as well as uncertainties in the statistical data and in model parameter values.


Assuntos
Gado/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Ruminantes/crescimento & desenvolvimento , Agricultura/métodos , Animais , Dióxido de Carbono/química , Mudança Climática , Ecossistema , Europa (Continente) , Fertilizantes , Pradaria , Modelos Teóricos , Nitrogênio/química , Temperatura
17.
Proc Natl Acad Sci U S A ; 111(9): 3280-5, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24344265

RESUMO

Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510-758 ppm of CO2), vegetation carbon increases by 52-477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended.


Assuntos
Atmosfera/química , Ciclo do Carbono/fisiologia , Dióxido de Carbono/análise , Carbono/farmacocinética , Mudança Climática , Modelos Teóricos , Plantas/metabolismo , Simulação por Computador , Previsões , Fatores de Tempo , Incerteza
18.
Environ Sci Technol ; 43(22): 8678-83, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20028070

RESUMO

Although the CO(2) mitigation potential of biofuels has been studied by extrapolation of small-scale studies, few estimates exist of the net regional-scale carbon balance implications of biofuel cultivations programs, either growing conventional biofuel crops or applying new advanced technologies. Here we used a spatially distributed process-driven model over the 20 Mha of recently abandoned agricultural lands of the Former Soviet Union to quantify the GHG mitigation by biofuel production from Low Input/High Diversity (LIHD) grass-legume prairies and to compare this GHG mitigation with the one of soil C sequestration as it currently occurs. LIHD has recently received a lot of attention as an emerging opportunity to produce biofuels over marginal lands leading to a good energy efficiency with minimal adverse consequences on food security and ecosystem services. We found that, depending on the time horizon over which one seeks to maximize the GHG benefit, the optimal time for implementing biofuel production shifts from "never" (short-term horizon) to "as soon as possible" (longer-term horizon). These results highlight the importance of reaching agreement a priori on the target time interval during which biofuels are expected to play a role within the global energy system, to avoid deploying biofuel technology over a time interval for which it has a detrimental impact on the GHG mitigation objective. The window of opportunity for growing LIHD also stresses the need to reduce uncertainties in soil C inputs, turnover, and soil organic matter stability under current and future climate and management practices.


Assuntos
Agricultura , Biocombustíveis , Carbono/química , Solo/análise , Mudança Climática , Produtos Agrícolas , U.R.S.S.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...