Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146975

RESUMO

T cells in jawed vertebrates comprise two lineages, αß T-cells and γδ T-cells, defined by the antigen receptors they express, i.e., αß and γδ T-cell receptors (TCRs), respectively. The two lineages have different immunological roles, requiring γδ TCRs to recognize more structurally-diverse ligands1. Nevertheless, the receptors use shared CD3 subunits to initiate signaling. Whereas the structural organization of αß TCRs is understood2,3, the architecture of γδ TCRs is unknown. Here, we used cryogenic electron microscopy to determine the structure of a fully-assembled, MR1-reactive human Vδ3Vγ8 TCR/CD3δγε2ζ2 complex bound by anti-CD3ε antibody Fab fragments4,5. The arrangement of CD3 subunits in γδ and αß TCRs is conserved and, although the transmembrane α-helices of the TCR-γδ and -αß subunits differ markedly in sequence, the packing of the eight transmembrane-helix bundles is similar6. However, in contrast to the apparently rigid αß TCR2,3,6, the γδ TCR exhibits considerable conformational heterogeneity, owing to the ligand-binding TCR-γδ subunits being tethered to the CD3 subunits by their transmembrane regions only. Reducing this conformational heterogeneity by transferring the Vδ3Vγ8 TCR variable domains to an αß TCR enhanced receptor signaling, suggesting that γδ TCR organization reflects a compromise between efficient signaling and the ability to engage structurally-diverse ligands. Our findings reveal the remarkable structural plasticity of the TCR on evolutionary timescales, and recast it as a highly versatile receptor capable of initiating signaling as either a rigid or flexible structure.

2.
Immunity ; 57(2): 256-270.e10, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38354703

RESUMO

Antibodies can block immune receptor engagement or trigger the receptor machinery to initiate signaling. We hypothesized that antibody agonists trigger signaling by sterically excluding large receptor-type protein tyrosine phosphatases (RPTPs) such as CD45 from sites of receptor engagement. An agonist targeting the costimulatory receptor CD28 produced signals that depended on antibody immobilization and were sensitive to the sizes of the receptor, the RPTPs, and the antibody itself. Although both the agonist and a non-agonistic anti-CD28 antibody locally excluded CD45, the agonistic antibody was more effective. An anti-PD-1 antibody that bound membrane proximally excluded CD45, triggered Src homology 2 domain-containing phosphatase 2 recruitment, and suppressed systemic lupus erythematosus and delayed-type hypersensitivity in experimental models. Paradoxically, nivolumab and pembrolizumab, anti-PD-1-blocking antibodies used clinically, also excluded CD45 and were agonistic in certain settings. Reducing these agonistic effects using antibody engineering improved PD-1 blockade. These findings establish a framework for developing new and improved therapies for autoimmunity and cancer.


Assuntos
Proteínas Tirosina Fosfatases , Transdução de Sinais , Proteínas Tirosina Fosfatases/metabolismo , Antígenos CD28 , Receptores Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA