Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 77(4): 1679-88, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19204091

RESUMO

Following intestinal invasion, the processes leading to systemic dissemination of the obligate intracellular protozoan Toxoplasma gondii remain poorly understood. Recently, tachyzoites representative of type I, II and III T. gondii populations were shown to differ with respect to their ability to transmigrate across cellular barriers. In this process of active parasite motility, type I strains exhibit a migratory capacity superior to those of the type II and type III strains. Data also suggest that tachyzoites rely on migrating dendritic cells (DC) as shuttling leukocytes to disseminate in tissue, e.g., the brain, where cysts develop. In this study, T. gondii tachyzoites sampled from the three populations were allowed to infect primary human blood DC, murine intestinal DC, or in vitro-derived DC and were compared for different phenotypic traits. All three archetypical lineages of T. gondii induced a hypermigratory phenotype in DC shortly after infection in vitro. Type II (and III) strains induced higher migratory frequency and intensity in DC than type I strains did. Additionally, adoptive transfer of infected DC favored the dissemination of type II and type III parasites over that of type I parasites in syngeneic mice. Type II parasites exhibited stronger intracellular association with both CD11c(+) DC and other leukocytes in vivo than did type I parasites. Altogether, these findings suggest that infected DC contribute to parasite propagation in a strain type-specific manner and that the parasite genotype (type II) most frequently associated with toxoplasmosis in humans efficiently exploits DC migration for parasite dissemination.


Assuntos
Movimento Celular , Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Toxoplasma/genética , Toxoplasma/patogenicidade , Transferência Adotiva , Animais , Células da Medula Óssea/imunologia , Células Cultivadas , Células Dendríticas/fisiologia , Genótipo , Humanos , Camundongos , Especificidade da Espécie , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/imunologia
2.
Infect Immun ; 77(3): 970-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19139191

RESUMO

The obligate intracellular parasite Toxoplasma gondii can actively infect any nucleated cell type, including cells from the immune system. In the present study, we observed that a large number of natural killer (NK) cells were infected by T. gondii early after intraperitoneal inoculation of parasites into C57BL/6 mice. Interestingly, one mechanism of NK cell infection involved NK cell-mediated targeting of infected dendritic cells (DC). Perforin-dependent killing of infected DC led to active egress of infectious parasites that rapidly infected adjacent effector NK cells. Infected NK cells were not efficiently targeted by other NK cells. These results suggest that rapid transfer of T. gondii from infected DC to effector NK cells may contribute to the parasite's sequestration and shielding from immune recognition shortly after infection.


Assuntos
Células Dendríticas/parasitologia , Células Matadoras Naturais/parasitologia , Toxoplasmose/transmissão , Animais , Células Dendríticas/imunologia , Citometria de Fluxo , Humanos , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Toxoplasma/imunologia , Toxoplasmose/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...