Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 263: 122129, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39094199

RESUMO

Arbuscular mycorrhizal fungi (AMF) colonization has been used in constructed wetlands (CWs) to enhance treatment performance. However, its role in azole (fungicide) degradation and microbial community changes is not well understood. This study aims to explore the impact of AMF on the degradation of tebuconazole and its metabolites in CWs. Total organic carbon levels were consistently higher with the colonization of AMF (AMF+; 9.63- 16.37 mg/L) compared to without the colonization of AMF (AMF-; 8.79-14.48 mg/L) in CWs. Notably, tebuconazole removal was swift, occurring within one day in both treatments (p = 0.885), with removal efficiencies ranging from 94.10 % to 97.83 %. That's primarily due to rapid substrate absorption at the beginning, while degradation follows with a longer time. Four metabolites were reported in CWs first time: tebuconazole hydroxy, tebuconazole lactone, tebuconazole carboxy acid, and tebuconazole dechloro. AMF decreased the abundance of tebuconazole dechloro in the liquid phase, suggesting an inhibitory effect of AMF on dechlorination processes. Furthermore, tebuconazole carboxy acid and hydroxy were predominantly found in plant roots, with a higher abundance observed in AMF+ treatments. Metagenomic analysis highlighted an increasing abundance in bacterial community structure in favor of beneficial microorganisms (xanthomonadales, xanthomonadaceae, and lysobacter), along with a notable presence of functional genes like codA, NAD, and deaD in AMF+ treatments. These findings highlight the positive influence of AMF on tebuconazole stress resilience, microbial community modification, and the enhancement of bioremediation capabilities in CWs.

2.
Sci Total Environ ; 947: 174504, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38971250

RESUMO

Cyanobacteria blooms in fishponds, driven by climate change and anthropogenic activities, have become a critical concern for aquatic ecosystems worldwide. The diversity in fishpond sizes and fish densities further complicates their monitoring. This study addresses the challenge of accurately predicting cyanobacteria concentrations in turbid waters via remote sensing, hindered by optical complexities and diminished light signals. A comprehensive dataset of 740 sampling points was compiled, encompassing water quality metrics (cyanobacteria levels, total chlorophyll, turbidity, total cell count) and spectral data obtained through AlgaeTorch, alongside Sentinel-2 reflectance data from three Trebon fishponds (UNESCO Man and Biosphere Reserve) in the Czech Republic over 2022-2023. Partial Least Squares Regression (PLSR) and three machine learning algorithms, Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost), were developed based on seasonal and annual data volumes. The SVM algorithm demonstrated commendable performance on the one-year data validation dataset from the Svet fishpond for the prediction of cyanobacteria, reflected by the key performance indicators: R2 = 0.88, RMSE = 15.07 µg Chl-a/L, and RPD = 2.82. Meanwhile, SVM displayed steady results in the unified one-year validation dataset from Nadeje, Svet, and Vizír fishponds, with metrics showing R2 = 0.56, RMSE = 39.03 µg Chl-a/L, RPD = 1.50. Thus, Sentinel data proved viable for seasonal cyanobacteria monitoring across different fishponds. Overall, this study presents a novel approach for enhancing the precision of cyanobacteria predictions and long-term ecological monitoring in fishponds, contributing significantly to the water quality management strategies in the Trebon region.


Assuntos
Cianobactérias , Monitoramento Ambiental , Aprendizado de Máquina , Tecnologia de Sensoriamento Remoto , Monitoramento Ambiental/métodos , República Tcheca , Qualidade da Água , Eutrofização , Máquina de Vetores de Suporte
3.
Sci Total Environ ; 912: 169195, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38081427

RESUMO

Sulfonamides are high-consumption antibiotics that reach the aquatic environment. The threat related to their presence in wastewater and the environment is not only associated with their antibacterial properties, but also with risk of the spread of drug resistance in bacteria. Therefore, the aim of this work was to evaluate the occurrence of eight commonly used sulfonamides, sulfonamide resistance genes (sul1-3) and integrase genes intI1-3 in five full-scale constructed wetlands (CWs) differing in design (including hybrid systems) and in the source of wastewater (agricultural drainage, domestic sewage/surface runoff, and animal runs runoff in a zoo). The CWs were located in low-urbanized areas in Poland and in Czechia. No sulfonamides were detected in the CW treating agricultural tile drainage water. In the other four systems, four sulfonamide compounds were detected. Sulfamethoxazole exhibited the highest concentration in those four CWs and its highest was 12,603.23 ± 1000.66 ng/L in a CW treating a mixture of domestic sewage and surface runoff. Despite the high removal efficiencies of sulfamethoxazole in the tested CWs (86 %-99 %), it was still detected in the treated wastewater. The sul1 genes occurred in all samples of raw and treated wastewater and their abundance did not change significantly after the treatment process and it was, predominantly, at the level 105 gene copies numbers/mL. Noteworthy, sul2 genes were only found in the influents, and sul3 were not detected. The sulfonamides can be removed in CWs, but their elimination is not complete. However, hybrid CWs treating sewage were superior in decreasing the relative abundance of genes and the concentration of SMX. CWs may play a role in the dissemination of sulfonamide resistance genes of the sul1 type and other determinants of drug resistance, such as the intI1 gene, in the environment, however, the magnitude of this phenomenon is a matter of further research.


Assuntos
Esgotos , Águas Residuárias , Animais , Esgotos/microbiologia , Áreas Alagadas , Sulfonamidas , Resistência Microbiana a Medicamentos/genética , Antibacterianos , Sulfanilamida , Sulfametoxazol , Eliminação de Resíduos Líquidos
4.
Chemosphere ; 314: 137645, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36572365

RESUMO

The degradability of specific organic micropollutants in constructed wetlands (CWs) may differ depending on the prevalence of oxic or anoxic conditions. These conditions are governed, among other factors, by the water saturation level in the system. This study investigated the removal of three environmentally-relevant organic micropollutants: bisphenol-group plasticizer bisphenol S (BPS), household-use insecticide fipronil (FPN) and non-steroidal anti-inflammatory drug ketoprofen (KTP) in the model CWs set up in an outdoor column system. BPS and KTP, in contrast to FPN, exhibit higher biodegradability potential under oxic conditions. The experimental CWs were operated under various saturation conditions: unsaturated, partially saturated and saturated, and mimicked the conditions occurring in unsaturated, partially-saturated intermittent vertical-flow CWs and in horizontal-flow CWs, respectively. The CWs were fed with synthetic household wastewater with the concentration of the micropollutants at the level of 30-45 µg/L. BPS and KTP exhibited contrasting behaviour against FPN in the CWs in the present experiment. Namely, BPS and KTP were almost completely removed in the unsaturated CWs without a considerable effect of plants, but their removal in saturated CWs was only moderate (approx. 50%). The plants had only a pronounced effect on the removal of BPS in saturated systems, in which they enhanced the removal by 46%. The removal of FPN (approx. 90%) was the highest in the saturated and partially-saturated CWs, with moderate removal (66.7%) in unsaturated systems. Noteworthy, partially-saturated CWs provided high or very high removal of all three studied substances despite their contrasting degradability under saturated and unsaturated conditions. Namely, their removal efficiencies in planted CWs were 95.9%, 94.5% and 81.6%, for BPS, KTP and FPN, respectively. The removal of the micropollutants in partially-saturated CWs was comparable or only slightly lower than in the best treatment option making it the performance all-rounder for the compounds with contrasting biodegradability properties.


Assuntos
Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Áreas Alagadas , Águas Residuárias , Plantas/metabolismo , Nitrogênio/metabolismo , Poluentes Químicos da Água/análise
5.
J Hazard Mater ; 439: 129562, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35868083

RESUMO

Arbuscular mycorrhizal fungi (AMF) exhibit great potential in heavy-metal immobilization in semi-aquatic habitats. Under high heavy-metal stress, however, the role of AMF is limited, and the detoxification mechanism of AMF in heavy metals' stabilization remains unclear. This study investigated the effects of AMF on a wetland plant (Iris pseudacorus) and chromium (Cr) immobilization at different water depths in semi-aquatic habitats with biochar addition. Results showed that AMF increased the physiological and photosynthetic functions in I. pseudacorus under Cr exposures. Besides, AMF alleviated the accumulation of reactive oxygen species and lipid peroxidation by enhancing the antioxidant enzyme activities. AMF and biochar significantly decreased Cr concentrations in outlet water and increased Cr accumulation in I. pseudacorus. Besides, biochar also vastly improved Cr accumulation in the substrate under the fluctuating water depth. AMF reduced Cr bioavailability in the substrate, with Cr (Ⅵ) concentrations and acid-soluble forms of Cr decreased by 0.3-64.5% and 19.0-40.8%, respectively. Micro-proton-induced X-ray emission was used to determine element localization and revealed that AMF improved the nutrients uptake by wetland plants and inhibited Cr translocation from roots to shoots. Overall, this study demonstrated that the interaction between AMF and biochar could significantly enhance the immobilization of high Cr concentrations in semi-aquatic habitats.


Assuntos
Metais Pesados , Micorrizas , Carvão Vegetal , Cromo/toxicidade , Ecossistema , Fungos , Raízes de Plantas/microbiologia , Plantas , Água/farmacologia
6.
Sci Total Environ ; 833: 155200, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35421456

RESUMO

The combination sequence of traditional hybrid constructed wetlands (HCWs) affects the removal of nitrogen in raw sewage, but the effect of the combination sequence on nitrogen removal pathway have seldom been reported, especially the specific conditions allowing anammox to occur. Three-stage HCWs, namely vertical flow (VF), horizontal flow (HF) and surface flow (SF) constructed wetlands, were arranged in six different sequences to investigate nitrogen removal efficiencies and microbial removal pathways using metagenomic and stable isotope analyses. Results showed that the combination sequence significantly affected nitrogen removal pathways in HCWs. We found the best removal of total nitrogen (~50%) and ammonium (NH4+-N, ~99%) in HCWs with a VFCW in the 1st stage. Metagenomic results and stable isotope analyses further indicated that simultaneous nitrification and heterotrophic denitrification were the main pathways in unsaturated VFCW, which depended on the energy substance and electron donor supplied by chemical oxygen demand (CODCr) in raw sewage. Nitrifier, anammox bacteria and autotrophic denitrifies prevailed in the subsequent saturated CWs, which tend to nitrogen loss by partial nitrification and anammox in HFCW when fed with NH4+-N wastewater with low CODCr. Providing NH4+-N and oxygen in low CODCr wastewater was the essential step to facilitate anammox process in HFCW. It implied that the problem of poor nitrogen removal due to carbon limitation could be overcome by optimizing conditions in anammox's favor.


Assuntos
Esgotos , Áreas Alagadas , Desnitrificação , Nitrificação , Nitrogênio/análise , Águas Residuárias/análise
7.
Water Res ; 217: 118430, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35429885

RESUMO

Presence of microplastics (MPs) in wastewater has posed a huge ecosystem risk. Constructed wetlands (CWs) can effectively intercept MPs, while with MPs accumulation the response of CWs' performance is still unclear. In order to evaluate those effects, we conducted a 370-day experiment using CW microcosms fed with different levels (0, 10, 100, and 1000 µg/L) of polystyrene (PS) MPs (diameter: 50-100 µm). Results showed that nitrogen removal efficiency was increased (by 3.9%-24.7%) during the first 60 days and then decreased (by 7.1%-41.3%) with MPs accumulating, but no obvious change in COD and TP removal was observed. From further analysis, MPs accumulation changed the biofilm composition (TOC content increased from 41.4% to 52.7%), substrate porosity (electrical resistivity increased by 1.2-2.4 folds), and oxygen mass transfer (|KLa,O2| increased from 3.5% to 18.6%). Moreover, the microbial dynamics presented a higher abundance of nitrifiers (Nitrospira and Nitrosomonas) during the 60-day experiment and a lower abundance in the last days, while denitrifiers (Thauera, Thiobacillus, and Anaerolinea) had a high relative abundance throughout the experiment, being consistent with the variation of nitrification and denitrification rates. Finally, structural equation model analysis proved that due to the changes of substrate characteristics and microbial compositions and activities, the obvious decrease in nitrification efficiency was a direct reason for the decline of nitrogen removal during 370-day MPs accumulation. Overall, our study first prove that MPs accumulation can cause a series of changes in physicochemical and microbial characteristics of substrate, and ultimately affect the nitrogen-transforming process in CWs. Although our conclusions were based on the lab-scale CWs being different from the real wetlands, we hope that the conclusions can provide the effective regulatory strategies to guide the control of MPs in the actual wetlands.


Assuntos
Microplásticos , Áreas Alagadas , Desnitrificação , Ecossistema , Nitrogênio/análise , Plásticos , Eliminação de Resíduos Líquidos , Águas Residuárias/análise
8.
Bioresour Technol ; 347: 126664, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34990859

RESUMO

Efficient removal of nitrate under low temperature is challenging because of the reduction of the microbial activity. This study successfully explored the promotion on the performance of denitrification utilizing the immobilized biochar in biofilters under low temperature (6 ± 2 °C). The results showed that the immobilized biochar increased the denitrification rate by 76.8% and decreased the nitrous oxide emissions by 82.5%. Mechanistic studies revealed that the immobilized biochar increased the activities of the denitrifying enzymes and three enzymes involved in glycolysis. Furthermore, the immobilized biochar elevated the activity of the electron transport system by 31.8%. Finally, structural equation model explained that the increase of nitrate reductase activity was a crucial factor to enhance the total nitrogen removal efficiency in biofilters with immobilized biochar. Overall, the use of immobilized biochar can be a novel strategy to enhance nitrogen removal and reduce greenhouse gas emissions in biofilters under low temperature.


Assuntos
Carvão Vegetal , Desnitrificação , Nitrogênio , Óxido Nitroso , Temperatura
9.
Environ Sci Pollut Res Int ; 29(15): 22223-22236, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34780013

RESUMO

The present study aimed to develop a pilot-scale integrated system composed of anaerobic biofilter (AF), a floating treatment wetland (FTW) unit, and a vertical flow constructed wetland coupled with a microbial fuel cell (CW-MFC) and a reactive bed filter (RBF) for simultaneously decentralized urban wastewater treatment and bioelectricity generation. The first treatment stage (AF) had 1450 L and two compartments: a settler and a second one filled with plastic conduits. The two CWs (1000 L each) were vegetated with mixed plant species, the first supported in a buoyant expanded polyethylene foam and the second (CW-MFC) filled with pebbles and gravel, whereas the RBF unit was filled with P adsorbent material (light expanded clay aggregate, or LECA) and sand. In the CW-MFC units, 4 pairs of electrode chambers were placed in different spacing. First, both cathode and anode electrodes were composed of graphite sticks and monitored as open circuit. Later, the cathode electrodes were replaced by granular activated carbon (GAC) and monitored as open and closed circuits. The combined system efficiently reduced COD (> 64.65%), BOD5 (81.95%), N-NH3 (93.17%), TP (86.93%), turbidity (94.3%), and total coliforms (removal of three log units). Concerning bioenergy, highest voltage values were obtained with GAC electrodes, reaching up to 557 mV (open circuit) and considerably lower voltage outputs with closed circuit (23.1 mV). Maximum power densities were obtained with 20 cm (0.325 mW/m2) and 30 cm (0.251 mW/m2). Besides the electrode superficial areas, the HRT and the water level may have influenced the voltage values, impacting DO and COD concentrations in the wastewater.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Eletricidade , Eletrodos , Águas Residuárias , Áreas Alagadas
10.
Sci Total Environ ; 799: 149301, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371418

RESUMO

Frost-free areas have suitable climate for wetland plant growth and constructed wetlands (CW) technology. Information on the quantification of plant biomass and uptake efficiency in field-scale CWs is limited in these climates. The removal efficiency of total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), and total suspended solids (TSS) in wastewater from sewage plants, domestic sewage, and an industrial park in 15 rural and urban CWs in Guangdong Province, China, with an average temperature of 30 °C was evaluated. The effects of influent concentration, hydraulic load, the wastewater's physicochemical properties, operating conditions, and plant uptake were analysed. The mean removal rates were 40.0%, 45.2%, 41.1%, and 71.7% for TN, TP, COD, and TSS, respectively, which were higher than the removal load of the field-scale CWs in temperate regions. Removal loads of TN, TP, COD, and TSS were highest in CWs that have been operating for 5-6 years, treating wastewater volumes of over 1 m3/m2·d. The removal efficiency was mainly related to the inflow concentration and less affected by the type of CWs. Nutrient accumulation trends were primarily linked to influent concentrations (TN: r2 = 0.89, P = 0.007; TP: r2 = 0.96, P = 0.001) and plant biomass (TN: r2 = 0.96, P = 0.001; TP: r2 = 0.92, P = 0.004). Plant biomass contributed 2%-29% and 2%-70%, respectively, to removing N and P in CWs. The average uptake concentration of N and P in aboveground plant organs (15.66 ± 4.44 mg N/g, 2.15 ± 1.18 mg P/g) was generally higher than that of other temperate plants. A strong relationship between TN and TP in the biomass was also observed; however, the relationship is only restricted by the influent TP concentration. Arundo donax is well-adapted for nutrient accumulation and adaptation and is an ideal wetland plant to purify wastewater in frost-free climates.


Assuntos
Fósforo , Áreas Alagadas , Nitrogênio/análise , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias
11.
J Environ Manage ; 296: 113217, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34246029

RESUMO

This study investigated the role of arbuscular mycorrhizal fungal (AMF) for the removal of ibuprofen (IBU) and diclofenac (DCF) in constructed wetlands (CWs) with four different substrates. Results showed that AMF colonization in adsorptive substrate (perlite, vermiculite, and biochar) systems was higher than that in sand systems. AMF enhanced the tolerance of Glyceria maxima to the stress of IBU and DCF by promoting the activities of antioxidant enzymes (peroxidase and superoxide dismutase) and the contents of soluble protein, while decreasing the contents of malondialdehyde and O2•-. The removal efficiencies of IBU and DCF were increased by 15%-18% and 25%-38% in adsorptive substrate systems compare to sand systems. Adsorptive substrates enhanced the accumulation of IBU and DCF in the rhizosphere and promoted the uptake of IBU and DCF by plant roots. AMF promoted the removal of IBU and DCF in sand systems but limited their reduction in adsorptive substrate systems. In all scenarios, the presence of AMF decreased the contents of CECs metabolites (2-OH IBU, CA IBU, and 4'-OH IBU) in the effluents and promoted the uptake of IBU by plant roots. Therefore, these results indicated that the addition of adsorptive substrates could enhance the removal of IBU and DCF in CWs. The role of AMF on the removal of IBU and DCF was influenced by CW substrate. These may provide useful information for the application of AMF in CWs to remove contaminants of emerging concern.


Assuntos
Micorrizas , Áreas Alagadas , Biodegradação Ambiental , Diclofenaco , Ibuprofeno , Raízes de Plantas , Simbiose
12.
Sci Total Environ ; 779: 146268, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33744583

RESUMO

Constructed wetlands (CWs) have been regarded as efficient technologies for both wastewater treatment and reuse of water resources. Most studies on CW treatment efficiency are limited to a short-term perspective, and there are still many unknowns about the long-term performance of CWs. Here we evaluated the performance of an integrated CW that has been in operation for more than ten years. The average removal rates of TN and TP were maintained at 53.6% and 67.3% over 10 years, respectively. The annual mass reductions in TN and TP reached 937.5 kg ha-1 yr-1 and 303.2 kg ha-1 yr-1, respectively. In addition, TN removal rate was significantly higher in summer and autumn than those in spring, yet there was no seasonal difference in TP removal. The bacterial richness and diversity in summer and autumn were higher than those in spring. TN and TOC not only determine the bacterial community structure, but also affect the removal efficiency of CW. Denitrification and dephosphorization microorganisms were enriched and accounted for a considerable proportion (21.14-52.85%) in the bacterial community. In addition, the relative abundance of Pseudomonas was significantly positively related with the rate of TN and TP removal.

13.
Sci Total Environ ; 777: 146044, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33689897

RESUMO

Floating treatment wetlands (FTWs) are increasingly gaining popularity due to a set of valuable features like wastewater remediation under varied conditions, ecosystem quality preservation, landscape conservation, and aesthetic benefits. FTW is a phyto-technology in which macrophytes grow on a floating raft with their roots in permanent contact with water and remove pollutants via several physicochemical-biological processes. FTW is highly capable of overcoming technical and operational challenges that come way in stormwater treatment due to the erratic nature of hydrologic and input pollutant loads because this innovative buoyant hydroponic design can move up and down with fluctuating water levels in the stormwater pond and can treat highly variable flows. Plants and biofilms attached to the roots hanging beneath the floating mat play a pivotal role in FTWs. The present review encompasses the concept of FTWs, their structural designs, relevance in stormwater management, and mechanism of plant uptake for pollutant removal. The role of FTWs to remove heavy metals and nutrients is also critically analyzed. Understanding hydraulics and other parameters of FTW is vital to effective design. Hence, the role of vegetation coverage, vegetation type, sorption media, aeration frequency, and intensity, and plant density to enhance system efficiency is also highlighted. Due to their operational flexibility and environmentally friendly working with no additional burden on existing urban land use, FTWs entice broad international interest and offer a coherent solution for stormwater management. MAIN FINDINGS: The review delivers state-of-the-art analysis of the current understanding of hydraulics and other parameters of FTWs, and associated mechanisms to enhance the treatment efficiency of FTWs for nutrients and heavy metals removal.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Ecossistema , Nutrientes , Chuva , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Abastecimento de Água , Áreas Alagadas
14.
Sci Total Environ ; 766: 142474, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33071144

RESUMO

The objective of the present study was to develop a combined system composed of anaerobic biofilter (AF) and floating treatment wetlands (FTW) coupled with microbial fuel cells (MFC) in the buoyant support for treating wastewater from a university campus and generate bioelectricity. The raw wastewater was pumped to a 1450 L tank, operated in batch flow and filled with plastic conduits. The second treatment stage was composed of a 1000 L FTW box with a 200 L plastic drum inside (acting as settler in the entrance) and vegetated with mixed ornamental plants species floating in a polyurethane support fed once a week with 700 L of wastewater. In the plant roots, graphite rods were placed to act as cathodes, while on the bottom of the box 40 graphite sticks inside a plastic hose with a stainless-steel cable acting as the anode chamber. Open circuit voltages were daily measured for 6 weeks, and later as closed circuit with the connection of 1000 Ω resistors. Plant harvestings were conducted, in which biomass production and plant uptake from each of the species were measured. On average, system was efficient in reducing BOD5 (55.1%), COD (71.4%), turbidity (90.9%) and total coliforms (99.9%), but presented low efficiencies regarding total N (8.4%) and total P (11.4%). Concerning bioenergy generation, voltage peaks and maximum power density were observed on the feeding day, reaching 225 mV and 0.93 mW/m2, respectively, and in general decaying over the 7 days. In addition, plant species with larger root development presented higher voltage values than plants with the smaller root systems, possible because of oxygen release. Therefore, the combined system presented potential of treating wastewater and generating energy by integrating FTW and MFC, but further studies should investigate the FTW-MFC combination in order to improve its treatment performance and maximize energy generation.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Eletrodos , Características da Família , Águas Residuárias , Áreas Alagadas
15.
J Hazard Mater ; 409: 124524, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33243641

RESUMO

This study investigated the effects of arbuscular mycorrhizal fungi (AMF) colonization on the growth of wetland plants (Glyceria maxima), and treatment performance in constructed wetlands (CWs) under the stress of pharmaceuticals ibuprofen (IBU) and diclofenac (DCF). Results showed that the growth of G. maxima was significantly increased by AMF colonization. AMF significantly increased the activities of antioxidant enzymes (peroxidase and superoxide dismutase) and soluble protein content in wetland plants, but the contents of malondialdehyde and O2•- were reduced. The removal efficiencies of TOC, PO43--P, NH4+-N, and TN were increased in AMF+ treatments by 6%, 11%, 15% and 11%, respectively. AMF increased the removal efficiencies of IBU and DCF by 6-14% and 2-21%, respectively, and reduced the content of their metabolites (2-OH IBU, CA IBU and 4'-OH DCF) in the effluent. Besides, the presence of AMF increased the contents of IBU and DCF in plant roots, while decreased their transportation to shoots. AMF symbiosis decreased the contents of IBU metabolites (2-OH IBU and CA IBU) but increased the contents of DCF metabolite (4'-OH DCF) in the roots of the host plant. In conclusion, these results indicated that AMF plays a promising role in CWs for emerging pollutants removal.


Assuntos
Micorrizas , Preparações Farmacêuticas , Diclofenaco , Fungos , Ibuprofeno , Raízes de Plantas , Áreas Alagadas
16.
Chemosphere ; 262: 128366, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182086

RESUMO

The embedding microbial fuel cell (MFC) into constructed wetlands (CW) to form CW-MFC bears the potential to obtain bioelectricity and a clean environment. In this study, a bibliometric analysis using VOSviewer based on Web of Science data was conducted to provide an overview by tracing the development footprint of this technology. The countries, institutions, authors, key terms, and keywords were tracked and corresponding mapping was generated. From 2012 to September 2020, 442 authors from 129 organizations in 26 countries published 135 publications in 42 journals with total citation of 3139 times were found. The key terms analysis showed four clusters: bioelectricity generation performance, mechanism study, refractory pollutants removal, and enhanced conventional contaminants removal. Further research themes include exploring the biochemical properties of electrochemically active bacteria, emerging contaminants removal, effective bioelectricity harvest and the use, and biosensor development as well as scaling-up for real field application. The bibliometric results provide valuable references and information on potential research directions for future studies.


Assuntos
Fontes de Energia Bioelétrica , Eliminação de Resíduos Líquidos , Áreas Alagadas , Bactérias , Bibliometria , Eletricidade , Eletrodos , Águas Residuárias
17.
Chemosphere ; 266: 128939, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33248733

RESUMO

Constructed wetlands (CWs) are decentralized wastewater treatment systems considered to be green and low cost. They have the potential to effectively remove pollutants and recycle nutrients with plant composting. However, they need large areas to implement them due to the usual high Hydraulic Retention Times (HRT), reaching up to 50 days. The main objective of the present study was to evaluate the influence of HRT (HRT = 3, 7, and 10 days), and seasonality on Total Phosphorus (TP) removal, and standing stock in a pilot scale free water surface CW (FWS CW). Unplanted and planted (Eichhornia crassipes) tanks were evaluated in wet and dry seasons. The FWS CW was set up as a complementary treatment to a secondary level wastewater treatment plant. The system was monitored weekly for ten months, totalizing 29 replicate samplings (n = 58). Planted tanks were harvested every week to keep free space for plant reproduction (∼40%). The mean removal efficiency of TP ranged between 82% and 95% without a significant difference between HRT (pvalue > 0.05). However, when the effects of the sedimentation of the unplanted tanks were disregarded, the lowest HRT (3 days) tank presented the highest standing stock of TP. The wet season presented a significant difference in TP removal results (pvalue < 0.05), associated with higher macrophyte growth rate due to more intense solar irradiation and incorporation of TP by E. crassipes. The results point out advances in P removal and recycling by a low-cost ecological engineering system.


Assuntos
Eichhornia , Poluentes Químicos da Água , Nitrogênio/análise , Fósforo , Eliminação de Resíduos Líquidos , Águas Residuárias , Água , Poluentes Químicos da Água/análise , Áreas Alagadas
18.
Environ Sci Technol ; 54(21): 14007-14016, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33092338

RESUMO

Nanosized plastics (nanoplastics) releasing into the wastewater may pose a potential threat to biological nitrogen removal. Constructed wetland (CW), a wastewater treatment or shore buffer system, is an important sink of nanoplastics, while it is unclear how nitrogen removal in CWs occurs in response to nanoplastics. Here, we investigated the effects of polystyrene (PS) nanoplastics (0, 10, and 1000 µg/L) on nitrogen removal for 180 days in CWs. The results revealed that total nitrogen removal efficiency decreased by 29.5-40.6%. We found that PS penetrated the cell membrane and destroyed both membrane integrity and reactive oxygen species balance. Furthermore, PS inhibited microbial activity in vivo, including enzyme (ammonia monooxygenase, nitrate reductase, and nitrite reductase) activities and electron transport system activity (ETSA). These adverse effects, accompanied by a decline in the relative abundance of nitrifiers (e.g., Nitrosomonas and Nitrospira) and denitrifiers (e.g., Thauera and Zoogloea), directly accounted for the strong deterioration observed in nitrogen removal. The decline in leaf and root activities decreased nitrogen uptake by plants, which is an important factor of deterioration in nitrogen removal. Overall, our results imply that the presence of nanoplastics in the aquatic environment is a hidden danger to the global nitrogen cycle and should receive more attention.


Assuntos
Nitrogênio , Áreas Alagadas , Desnitrificação , Microplásticos , Nitrogênio/análise , Eliminação de Resíduos Líquidos , Águas Residuárias
19.
Environ Res ; 191: 110203, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32946894

RESUMO

Arbuscular mycorrhizal fungi (AMF) provide a positive effect on antioxidant mechanisms in terrestrial plants under heavy metal stress. This study investigated the effects of AMF on wetland plant (Iris wilsonii) growth and antioxidant response under Cr stress at different water depths. Results showed that AMF inoculated I. wilsonii had higher antioxidant response than non-inoculated controls, with shoot superoxide dismutase (SOD), root SOD, shoot peroxidase (POD), and root POD contents increased by 4.7-39.6%, 7.5-29.5%, 11.2-68.6%, 16.8-50.3%, respectively. Meanwhile, shoot (root) proline, malondialdehyde (MDA) and superoxide anion (O2.-) contents in the AMF inoculated I. wilsonii were 10.2-44.3% (2.8-37.2%), 11.5-35.4% (16.9-28.2), and 14.9-30.5% (-0.9-26.3%) lower than those in the non-inoculated controls, respectively. Besides, AMF improved the growth of I. wilsonii with biomass, height, chlorophyll, K, and P contents in the shoots increased by 10.5-32.5%, 17.4-44.9%, 4.7-37.7%, 12.0-30.7%, 13.5-20.6%, respectively. Moreover, the I. wilsonii tolerance to Cr stress was also enhanced under the water depth of 6-3 cm. Therefore, AMF play an important role in wetland plant growth and antioxidant response under Cr stress, and it can improve wetland plants' tolerance to Cr stress at fluctuating water depth.


Assuntos
Micorrizas , Antioxidantes , Raízes de Plantas , Plantas , Áreas Alagadas
20.
Sci Total Environ ; 730: 139142, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32416508

RESUMO

Sludge treatment wetlands (STWs) are widely used to treat surplus sludge in recent years. However, the effects of plant species and loading rates on sludge characteristics in earthworm assistant STWs remain unclear. In the current study, six STWs planted with two plant species (Phragmites australis, Typha angustifolia) were investigated under four loading rates (60, 80, 90 and 120 kg DS/m2/yr) regarding the influence on sludge characteristics. Furthermore, earthworms were added in three STWs to evaluate their role on sludge stabilization during resting period. Results showed that the best sludge dewatering (dry solids (DS) of 45.0%) and stabilization (volatile solids to total solids (VS/TS) of 40.5%) were determined in the P. australis STWs at the loading rate of 80 kg DS/m2/yr. Furthermore, VS/TS and Escherichia coli contents in earthworm STWs were 5.5-11.2% and 12-39% lower than that in the control without earthworm addition. Meanwhile, earthworm also decreased the nutrient contents in STWs. However, earthworms had insignificant effects on heavy metal contents in STWs. Nevertheless, the bioavailability of Cd and Cr in STWs were decreased by earthworm addition, with an acid-soluble fraction of Cd and Cr reduced by 11.2-18% and 2.5-7.5%, respectively. In conclusion, sludge characteristics can be improved by earthworm addition in P. australis STWs.


Assuntos
Oligoquetos , Esgotos , Animais , Poaceae , Typhaceae , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA