Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(12): 20980-20998, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224830

RESUMO

A real-time and accurate characterization of the X-ray beam size is essential to enable a large variety of different experiments at free-electron laser facilities. Typically, ablative imprints are employed to determine shape and size of µm-focused X-ray beams. The high accuracy of this state-of-the-art method comes at the expense of the time required to perform an ex-situ image analysis. In contrast, diffraction at a curved grating with suitably varying period and orientation forms a magnified image of the X-ray beam, which can be recorded by a 2D pixelated detector providing beam size and pointing jitter in real time. In this manuscript, we compare results obtained with both techniques, address their advantages and limitations, and demonstrate their excellent agreement. We present an extensive characterization of the FEL beam focused to ≈1 µm by two Kirkpatrick-Baez (KB) mirrors, along with optical metrology slope profiles demonstrating their exceptionally high quality. This work provides a systematic and comprehensive study of the accuracy provided by curved gratings in real-time imaging of X-ray beams at a free-electron laser facility. It is applied here to soft X-rays and can be extended to the hard X-ray range. Furthermore, curved gratings, in combination with a suitable detector, can provide spatial properties of µm-focused X-ray beams at MHz repetition rate.

2.
Radiat Res ; 197(2): 131-148, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614193

RESUMO

The development of ultra-intense electron pulse for applications needs to be accompanied by the implementation of a practical dosimetry system. In this study four different systems were investigated as dosimeters for low doses with a very high-dose-rate source. First, the effects of ultra-short pulses were investigated for the yields of the Fricke dosimeter based on acidic solutions of ferrous sulfate; it was established that the yields were not significantly affected by the high dose rates, so the Fricke dosimeter system was used as a reference. Then, aqueous solutions of three compounds as fluorescence chemical dosimeters were utilized, each operated at a different solution pH: terephthalic acid - basic, trimesic acid - acidic, and coumarin-3-carboxylic acid (C3CA) - neutral. Fluorescence chemical dosimeters offer an attractive alternative to chemical dosimeters based on optical absorption for measuring biologically relevant low doses because of their higher sensitivity. The effects of very intense dose rate (TGy/ s) from pulses of fast electrons generated by a picosecond linear accelerator on the chemical yields of fluorescence chemical dosimeters were investigated at low peak doses (<20 Gy) and compared with yields determined under low-dose-rate irradiation from a 60 Co gamma-ray source (mGy/s). For the terephthalate and the trimesic acid dosimeters changes in the yields were not detected within the estimated (∼10%) precision of the experiments, but, due to the complexity of the mechanism of the hydroxyl radical initiated reactions in solutions of the relevant aromatic compounds, significant reductions of the chemical yield (-60%) were observed when the C3CA dosimeter was irradiated with the ultra-short pulses.


Assuntos
Dosímetros de Radiação
3.
Radiat Res ; 193(4): 372-382, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32097100

RESUMO

A standard Fricke dosimeter was used to measure the absorbed dose via the oxidation yields of Fe3+ ions in an aqueous environment induced by soft X rays within the "water window" spectral range. We also exploited the property of a neutral solution containing terephthalic acid as a tool for selective detection of OH radicals. Both dosimetric systems were irradiated using the experimental pulsed laser-plasma soft X-ray source as well as conventional 1.25-MeV gamma rays. Radiation chemical yields of Fe3+ ions and OH radicals were determined to be (5.13 ± 0.94) × 10-1 µmol·J-1 (4.95 ± 0.91 100eV-1) and (2.33 ± 0.35) × 10-2 µmol·J-1 (0.23 ± 0.03 100eV-1), respectively. Measurements were supported by Monte Carlo simulations to estimate the linear energy transfer of the water window radiation. The simulation results are in good agreement with expected linear energy transfer of ions inducing the same Fe3+ ion and OH radical radiation chemical yield.


Assuntos
Radical Hidroxila/química , Ferro/química , Radiometria , Raios X/efeitos adversos , Raios gama/efeitos adversos , Humanos , Radical Hidroxila/efeitos da radiação , Íons/química , Transferência Linear de Energia , Método de Monte Carlo , Oxirredução , Água/química
4.
Radiat Res ; 189(5): 466-476, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29505347

RESUMO

In this study, we examined dose-rate effects on strand break formation in plasmid DNA induced by pulsed extreme ultraviolet (XUV) radiation. Dose delivered to the target molecule was controlled by attenuating the incident photon flux using aluminum filters as well as by changing the DNA/buffer-salt ratio in the irradiated sample. Irradiated samples were examined using agarose gel electrophoresis. Yields of single- and double-strand breaks (SSBs and DSBs) were determined as a function of the incident photon fluence. In addition, electrophoresis also revealed DNA cross-linking. Damaged DNA was inspected by means of atomic force microscopy (AFM). Both SSB and DSB yields decreased with dose rate increase. Quantum yields of SSBs at the highest photon fluence were comparable to yields of DSBs found after synchrotron irradiation. The average SSB/DSB ratio decreased only slightly at elevated dose rates. In conclusion, complex and/or clustered damages other than cross-links do not appear to be induced under the radiation conditions applied in this study.


Assuntos
Quebras de DNA/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Relação Dose-Resposta à Radiação , Plasmídeos/genética
5.
Phys Chem Chem Phys ; 19(43): 29402-29408, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29075688

RESUMO

Formation yields of ˙OH radicals were precisely determined in aqueous solutions of coumarin-3-carboxylic acid and ferrous sulfate (i.e., Fricke dosimeter) exposed to 253.7 nm radiation delivered from a continuous source. Quantum yield of ˙OH radicals was determined as ∼0.08, i.e., roughly one out of twelve photons, efficiently absorbed in UV-illuminated solutions, produced one ˙OH radical. Energetically, a water molecule should undergo a correlated action of at least two 4.9 eV photons delivering enough energy for direct H-OH dissociation (5.0-5.4 eV). We suggest a mechanism based on an interaction of two water molecules, both in long-living triplet states. An intermolecular transfer of excitation energy provided a sufficient amount of energy for the dissociation of one water molecule into ˙OH and H˙ radicals. In an aqueous solution of phospholipids, quantum yields of hydroperoxides formed under these irradiation conditions decreased with total effectively absorbed energy (i.e. a dose), similar to the radiation chemical yields obtained during an exposure to ionizing radiation, such as gamma rays from radionuclide sources. Under 253.7 nm irradiation, one ˙OH radical causes a peroxidation of 34 phospholipid molecules. This implicates chain mechanism of the reaction.

6.
Radiat Environ Biophys ; 56(3): 241-247, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28500389

RESUMO

The effects of different types of radiation on the formation of peroxide forms of 2-dioleoyl-sn-glycero-3-phosphocholine were studied under various conditions. For the irradiation, an aqueous solution of small unilamellar vesicles was prepared. Variations in parameters such as the dose rate and molecular oxygen saturation levels were evaluated. Our study suggests that the mechanism of the peroxides formation process remains unchanged under irradiation by accelerated electrons, gamma and accelerated protons. The values of radiation chemical yields of the peroxidic form depend on the type of radiation, dose rate, and the saturation of molecular oxygen. The level of oxygen saturation strongly affects the values of radiation chemical yields as well, as the dissolved oxygen is an important agent participating in peroxidation and it is a source of free radicals during the radiolysis. The values of radiation chemical yields strongly suggest that the mechanism of radiation-induced peroxidation of phosphatidylcholines does not proceed via chain reaction.


Assuntos
Oxigênio/metabolismo , Fosfolipídeos/metabolismo , Relação Dose-Resposta à Radiação , Elétrons , Peróxidos Lipídicos/metabolismo , Prótons
7.
Radiat Environ Biophys ; 54(3): 343-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26007308

RESUMO

Clustered DNA damage induced by 10, 20 and 30 MeV protons in pBR322 plasmid DNA was investigated. Besides determination of strand breaks, additional lesions were detected using base excision repair enzymes. The plasmid was irradiated in dry form, where indirect radiation effects were almost fully suppressed, and in water solution containing only minimal residual radical scavenger. Simultaneous irradiation of the plasmid DNA in the dry form and in the solution demonstrated the contribution of the indirect effect as prevalent. The damage composition slightly differed when comparing the results for liquid and dry samples. The obtained data were also subjected to analysis concerning different methodological approaches, particularly the influence of irradiation geometry, models used for calculation of strand break yields and interpretation of the strand breaks detected with the enzymes. It was shown that these parameters strongly affect the results.


Assuntos
Dano ao DNA , Plasmídeos/efeitos da radiação , Prótons/efeitos adversos , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/metabolismo , Relação Dose-Resposta à Radiação , Eletroforese em Gel de Ágar , Raios gama/efeitos adversos , Transferência Linear de Energia , Modelos Biológicos , Plasmídeos/metabolismo , Soluções
8.
Artigo em Inglês | MEDLINE | ID: mdl-25974538

RESUMO

Ionizing radiation induces a variety of DNA damages including single-strand breaks (SSBs), double-strand breaks (DSBs), abasic sites, modified sugars, and bases. Most theoretical and experimental studies have been focused on DNA strand scissions, in particular production of DNA double-strand breaks. DSBs have been proven to be a key damage at a molecular level responsible for the formation of chromosomal aberrations, leading often to cell death. We have studied the nature of DNA damage induced directly by the pulsed 46.9-nm (26.5 eV) radiation provided by an extreme ultraviolet (XUV) capillary-discharge Ne-like Ar laser (CDL). Doses up to 45 kGy were delivered with a repetition rate of 3 Hz. We studied the dependence of the yield of SSBs and DSBs of a simple model of DNA molecule (pBR322) on the CDL pulse fluence. Agarose gel electrophoresis method was used for determination of both SSB and DSB yields. The action cross sections of the single- and double-strand breaks of pBR322 plasmid DNA in solid state were determined. We observed an increase in the efficiency of strand-break induction in the supercoiled DNA as a function of laser pulse fluence. Results are compared to those acquired at synchrotron radiation facilities and other sources of extreme-ultraviolet and soft x-ray radiation.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Quebras de DNA de Cadeia Simples/efeitos da radiação , Lasers de Gás , Raios Ultravioleta , Vácuo , Argônio , DNA Super-Helicoidal/efeitos da radiação , Eletroforese em Gel de Ágar , Desenho de Equipamento , Plasmídeos/genética , Plasmídeos/efeitos da radiação
9.
Opt Lett ; 37(15): 3033-5, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22859076

RESUMO

The interaction of free electron laser pulses with grating structure is investigated using 4.6±0.1 nm radiation at the FLASH facility in Hamburg. For fluences above 63.7±8.7 mJ/cm2, the interaction triggers a damage process starting at the edge of the grating structure as evidenced by optical and atomic force microscopy. Simulations based on solution of the Helmholtz equation demonstrate an enhancement of the electric field intensity distribution at the edge of the grating structure. A procedure is finally deduced to evaluate damage threshold.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...