Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(8): e10332, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37589038

RESUMO

The molluscan feeding structure is the radula, a chitinous membrane with teeth, which are highly adapted to the food and the substrate to which the food is attached. In Polyplacophora and Patellogastropoda, the handling of hard ingesta can be facilitated by high content of chemical compounds containing Fe or Si in the tooth cusps. Other taxa, however, possess teeth that are less mineralized, even though animals have to avoid structural failure or high wear during feeding as well. Here, we investigated the gastropod Gastropteron rubrum, feeding on hard Foraminifera, diatoms and Porifera. Tooth morphologies and wear were documented by scanning electron microscopy and their mechanical properties were tested by nanoindentation. We determined that gradients of hard- and stiffness run along each tooth, decreasing from cusp to basis. We also found that inner lateral teeth were harder and stiffer than the outer ones. These findings allowed us to propose hypotheses about the radula-ingesta interaction. In search for the origins of the gradients, teeth were visualized using confocal laser scanning microscopy, to determine the degree of tanning, and analyzed with energy-dispersive X-ray spectroscopy, to test the elemental composition. We found that the mechanical gradients did not have their origins in the elemental content, as the teeth did not contain high proportions of metals or other minerals. This indicates that their origin might be the degree of tanning. However, in the tooth surfaces that interact with the ingesta high Si and Ca contents were determined, which is likely an adaptation to reduce wear.

2.
J R Soc Interface ; 20(202): 20220927, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37221862

RESUMO

Molluscs forage with their radula, a chitinous membrane with teeth. Adaptations to hard or abrasive ingesta were well studied in Polyplacophora and Patellogastropoda, but for other taxa there are large gaps in knowledge. Here, we investigated the nudibranch gastropods Felimare picta and Doris pseudoargus, both of which feed on Porifera. Tooth morphologies were documented by scanning electron microscopy, and mechanical properties were tested by nanoindentation. We found that these parameters are rather similar in both species, indicating that teeth are similar in their function. To study the composition, teeth were visualized using confocal laser scanning microscopy (CLSM), to determine the degree of tanning, and analysed with energy-dispersive X-ray spectroscopy, to test the elemental composition. The emitted autofluorescence signal and the inorganic content differed between the species. This was especially prominent when studying the inner and outer tooth surfaces (leading and trailing edges). In F. picta, we detected high proportions of Si, whereas teeth of D. pseudoargus contained high amounts of Ca, which influenced the autofluorescence signal in CLSM. Employing nanoindentation, we determined high Young's modulus and hardness values for the leading edges of teeth, which relate to the Si and Ca content. This highlights that teeth with a similar morphology and mechanical properties can be mechanically enhanced via different chemical pathways in Nudibranchia.


Assuntos
Gastrópodes , Hepatófitas , Poríferos , Animais , Moluscos , Adaptação Psicológica , Aclimatação
3.
BMC Ecol Evol ; 21(1): 226, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963462

RESUMO

BACKGROUND: The soft-bodied cladobranch sea slugs represent roughly half of the biodiversity of marine nudibranch molluscs on the planet. Despite their global distribution from shallow waters to the deep sea, from tropical into polar seas, and their important role in marine ecosystems and for humans (as targets for drug discovery), the evolutionary history of cladobranch sea slugs is not yet fully understood. RESULTS: To enlarge the current knowledge on the phylogenetic relationships, we generated new transcriptome data for 19 species of cladobranch sea slugs and two additional outgroup taxa (Berthella plumula and Polycera quadrilineata). We complemented our taxon sampling with previously published transcriptome data, resulting in a final data set covering 56 species from all but one accepted cladobranch superfamilies. We assembled all transcriptomes using six different assemblers, selecting those assemblies that provided the largest amount of potentially phylogenetically informative sites. Quality-driven compilation of data sets resulted in four different supermatrices: two with full coverage of genes per species (446 and 335 single-copy protein-coding genes, respectively) and two with a less stringent coverage (667 genes with 98.9% partition coverage and 1767 genes with 86% partition coverage, respectively). We used these supermatrices to infer statistically robust maximum-likelihood trees. All analyses, irrespective of the data set, indicate maximal statistical support for all major splits and phylogenetic relationships at the family level. Besides the questionable position of Noumeaella rubrofasciata, rendering the Facelinidae as polyphyletic, the only notable discordance between the inferred trees is the position of Embletonia pulchra. Extensive testing using Four-cluster Likelihood Mapping, Approximately Unbiased tests, and Quartet Scores revealed that its position is not due to any informative phylogenetic signal, but caused by confounding signal. CONCLUSIONS: Our data matrices and the inferred trees can serve as a solid foundation for future work on the taxonomy and evolutionary history of Cladobranchia. The placement of E. pulchra, however, proves challenging, even with large data sets and various optimization strategies. Moreover, quartet mapping results show that confounding signal present in the data is sufficient to explain the inferred position of E. pulchra, again leaving its phylogenetic position as an enigma.


Assuntos
Gastrópodes , Animais , Aplysia/genética , Ecossistema , Gastrópodes/genética , Humanos , Moluscos/genética , Filogenia , Transcriptoma/genética
4.
Sci Rep ; 10(1): 19614, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184304

RESUMO

The potential of sponge-associated bacteria for the biosynthesis of natural products with antibacterial activity was evaluated. In a preliminary screening 108 of 835 axenic isolates showed antibacterial activity. Active isolates were identified by 16S rRNA gene sequencing and selection of the most promising strains was done in a championship like approach, which can be done in every lab and field station without expensive equipment. In a competition assay, strains that inhibited most of the other strains were selected. In a second round, the strongest competitors from each host sponge competed against each other. To rule out that the best competitors selected in that way represent similar strains with the same metabolic profile, BOX PCR experiments were performed, and extracts of these strains were analysed using metabolic fingerprinting. This proved that the strains are different and have various metabolic profiles, even though belonging to the same genus, i.e. Bacillus. Furthermore, it was shown that co-culture experiments triggered the production of compounds with antibiotic activity, i.e. surfactins and macrolactin A. Since many members of the genus Bacillus possess the genetic equipment for the biosynthesis of these compounds, a potential synergism was analysed, showing synergistic effects between C14-surfactin and macrolactin A against methicillin-resistant Staphylococcus aureus (MRSA).


Assuntos
Antibacterianos/biossíntese , Antibacterianos/farmacologia , Bacillus/metabolismo , Poríferos/microbiologia , Animais , Bacillus/genética , Bacillus/isolamento & purificação , Farmacorresistência Bacteriana , Lipopeptídeos/biossíntese , Lipopeptídeos/farmacologia , Macrolídeos/metabolismo , Macrolídeos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/farmacologia
5.
J Nat Prod ; 83(9): 2785-2796, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32910650

RESUMO

Phyllidiid nudibranchs are brightly colored gastropod mollusks, frequently encountered in coral reefs of the tropical Indo-Pacific. The lack of a protective shell is suggested to be compensated by toxic secondary metabolites that are sequestered from specific prey sponges. Our ongoing reconstruction of phyllidiid phylogeny using molecular data of more than 700 specimens, based on published data and newly collected specimens in various seasons and localities around North Sulawesi (Indonesia), demonstrates that Phyllidiella pustulosa is a species complex with at least seven well-supported clades. A metabolomic analysis of 52 specimens from all seven clades of P. pustulosa was performed. Secondary metabolite profiles were found to correlate with the phylogenetic study and not the prevailing food sponges as expected. GNPS molecular networking revealed a unique chemotype in clade 6. Detailed chemical analysis of a specimen from this chemically and genetically distinct P. pustulosa clade led to the identification of seven new sesquiterpenoids with a rare dichloroimidic moiety (1 and 4) and derivatives thereof (2, 3, 5-7). Our findings suggest that P. pustulosa clades should be raised to the species level.


Assuntos
Gastrópodes/química , Gastrópodes/genética , Metaboloma/genética , Sesquiterpenos/química , Animais , DNA/biossíntese , DNA/genética , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Filogenia
6.
Sci Rep ; 10(1): 13048, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747696

RESUMO

The knowledge of relationships between taxa is essential to understand and explain the chemical diversity of the respective groups. Here, twelve individuals of the panpulmonate slug Peronia persiae from two localities in Persian Gulf, and one animal of P. verruculata from Bangka Island, Indonesia, were analyzed in a phylogenetic and chemotaxonomic framework. Based on the ABGD test and haplotype networking using COI gene sequences of Peronia specimens, nine well-supported clades were found. Haplotype network analysis highlighted a considerable distance between the specimens of P. persiae and other clades. Metabolomic analysis of both species using tandem mass spectrometry-based GNPS molecular networking revealed a large chemical diversity within Peronia of different clades and localities. While P. persiae from different localities showed a highly similar metabolome, only few identical chemical features were found across the clades. The main common metabolites in both Peronia species were assigned as polypropionate esters of onchitriols and ilikonapyrones, and osmoprotectant amino acid-betaine compounds. On the other hand, the isoflavonoids genistein and daidzein were exclusively detected in P. persiae, while cholesterol and conjugated chenodeoxycholic acids were only found in P. verruculata. Flavonoids, bile acids, and amino acid-betaine compounds were not reported before from Onchidiidae, some are even new for panpulmonates. Our chemical analyses indicate a close chemotaxonomic relation between phylogeographically distant Peronia species.


Assuntos
Gastrópodes/química , Gastrópodes/classificação , Filogeografia , Aminoácidos/química , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Redes Reguladoras de Genes , Haplótipos/genética , Indonésia , Funções Verossimilhança , Filogenia , Especificidade da Espécie
7.
Beilstein J Org Chem ; 16: 1596-1605, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32704326

RESUMO

Investigations on the biochemical relationship between Doriprismatica stellata (Chromodorididae, Doridoidea) nudibranchs, their egg ribbons, and the associated dietary sponge Spongia cf. agaricina (Demospongiae, Porifera) led to the isolation of the structurally new scalarane-type sesterterpene 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin, with an unprecedented position of the cyclopropane ring annelated to the ring A. Unlike other scalaranes, which are most often functionalized at C-12 of ring C, it bears two acetoxy groups at C-11 and C-24 instead. The compound was present in all three samples, supporting the dietary relationship between chromodorid nudibranchs of the genus Doriprismatica and scalarane-containing dictyoceratid sponges of the Spongiidae family. The results also indicate that D. stellata passes the scalarane metabolite on to its egg ribbons, most likely for protective purposes. The scalarane showed antibacterial activity against the Gram-positive bacteria Arthrobacter crystallopoietes (DSM 20117) and Bacillus megaterium (DSM 32).

8.
Zootaxa ; 4758(3): zootaxa.4758.3.5, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32230131

RESUMO

Peronia J. Fleming, 1822 is an eupulmonate slug genus with a wide distribution in the Indo-Pacific Ocean. Currently, nine species are considered as valid. However, molecular data indicate cryptic speciation and more species involved. Here, we present results on a new species found in the Persian Gulf, a subtropical region with harsh conditions such as elevated salinity and high temperature compared to the Indian Ocean. Peronia persiae sp. nov. is described based on molecular, histological, anatomical, micro-computer tomography and scanning electron microscopy data. ABGD, GMYC and bPTP analyses based on 16S rDNA and cytochrome oxidase I (COI) sequences of Peronia confirm the delimitation of the new species. Moreover, our 14 specimens were carefully compared with available information of other described Peronia species. Peronia persiae sp. nov. is distinct in a combination of characters, including differences in the genital (ampulla, prostate, penial hooks, penial needle) and digestive systems (lack of pharyngeal wall teeth, tooth shape in radula, intestine of type II).


Assuntos
Gastrópodes , Animais , Oceano Índico , Irã (Geográfico) , Masculino , Filogenia
9.
Zootaxa ; 4652(2): zootaxa.4652.2.3, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31716869

RESUMO

We describe a new species, Moridilla jobeli sp. nov., belonging to the marine heterobranch group Aeolidioidea. Up to now, it is only recorded from Bunaken National Park, North Sulawesi, Indonesia. A combination of histological, computer tomographic and scanning electron microscopic methods was applied in order to describe and illustrate the anatomy of Moridilla jobeli sp. nov. in detail. Furthermore, we conducted molecular analyses which include available partial COI and 16S rRNA sequences, as well as the nuclear gene Histone 3 (H3) of Facelinidae and Aeolidiidae. NeighborNet analyses, species delimitation tests and phylogenetic reconstruction methods show the distinctiveness of the new species from the type species Moridilla brockii Bergh, 1888 and the two recently described species Moridilla fifo Carmona Wilson, 2018 and Moridilla hermanita Carmona Wilson, 2018, as well as the monophyly of the genus. A phylogenetic analysis of the Facelinidae and Aeolidiidae does not result in a resolved tree, therefore relationship of former assumed closely related genera, Noumeaella Risbec, 1937 and Palisa Edmunds, 1964, cannot be discussed in detail.


Assuntos
Gastrópodes , Animais , Indonésia , Filogenia , RNA Ribossômico 16S , Microtomografia por Raio-X
10.
Front Zool ; 15: 43, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30473719

RESUMO

BACKGROUND: A number of shelled and shell-less gastropods are known to use multiple defensive mechanisms, including internally generated or externally obtained biochemically active compounds and structures. Within Nudipleura, nudibranchs within Cladobranchia possess such a special defense: the ability to sequester cnidarian nematocysts - small capsules that can inject venom into the tissues of other organisms. This ability is distributed across roughly 600 species within Cladobranchia, and many questions still remain in regard to the comparative morphology and evolution of the cnidosac - the structure that houses sequestered nematocysts (called kleptocnides). In this paper, we describe cnidosac morphology across the main groups of Cladobranchia in which it occurs, and place variation in its structure in a phylogenetic context to better understand the evolution of nematocyst sequestration. RESULTS: Overall, we find that the length, size and structure of the entrance to the cnidosac varies more than expected based on previous work, as does the structure of the exit, the musculature surrounding the cnidosac, and the position and orientation of the kleptocnides. The sequestration of nematocysts has originated at least twice within Cladobranchia based on the phylogeny presented here using 94 taxa and 409 genes. CONCLUSIONS: The cnidosac is not homologous to cnidosac-like structures found in Hancockiidae. Additionally, the presence of a sac at the distal end of the digestive gland may have originated prior to the sequestration of nematocysts. This study provides a more complete picture of variation in, and evolution of, morphological characters associated with nematocyst sequestration in Cladobranchia.

11.
Front Zool ; 15: 17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760759

RESUMO

BACKGROUND: Despite widespread interest in solar-powered sea slugs (Sacoglossa: Gastropoda), relatively little is know about how they actually perform functional kleptoplasty. Sister-taxa Elysia timida and E. cornigera provide an ideal model system for investigating this phenomenon, since they feed on the same algal genus and only E. timida is capable of long-term kleptoplasty. Recent research has explored factors regarding functional kleptoplasty in E. timida, including their starvation longevity, digestive activity, autophagal response and photosynthetic efficiency under two different temperature conditions (18 °C and 21 °C). These studies revealed the trends E. timida displays regarding each factor during starvation as well as influences temperature has on some aspects of functional kleptoplasty. This study examines E. cornigera regarding each of these factors in an attempt to elucidate differences between each species that could explain their differing kleptoplastic abilities. Since both species naturally occur in 25 °C seawater (E. timida peak summer temperature, E. cornigera low winter temperature), each species was acclimatized to 25 °C to facilitate comparison and determine if these species exhibit physiological differences to starvation when under the same environmental conditions. RESULTS: When comparing the different E. timida temperature treatments, it becomes clear that increased temperatures compromise E. timida's kleptoplastic abilities. Specimens acclimatized to 25 °C revealed shorter starvation longevities surviving an average 42.4 days compared to the 95.9 day average observed in specimens exposed to 18 °C. Each temperature treatment displayed a significantly different decrease throughout the starvation period in both, the rate of photosynthetic efficiency and in the decreasing functional kleptoplast abundance. Lysosomal abundances are assessed here as indicators of different aspects of metabolic activity, which could be correlated to temperature. E. cornigera, also acclimatized to 25 °C did not display significantly similar patterns as any of the E. timida temperature treatments, having fewer incorporated kleptoplasts, a higher lysosomal response to starvation, a faster decrease in photosynthetic efficiency and a lower starvation longevity. CONCLUSIONS: These results confirm that each species has different physiological reactions to starvation and kleptoplast retention, even under the same conditions. While temperature affects aspects of functional kleptoplasty, it is likely not responsible for the differences in kleptoplastic abilities seen in these species.

12.
Mar Drugs ; 15(12)2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215579

RESUMO

The species diversity of marine heterobranch sea slugs found on field trips around Bunaken Island (North Sulawesi, Indonesia) and adjacent islands of the Bunaken National Marine Park forms the basis of this review. In a survey performed in 2015, 80 species from 23 families were collected, including 17 new species. Only three of these have been investigated previously in studies from Indonesia. Combining species diversity with a former study from 2003 reveals in total 140 species from this locality. The diversity of bioactive compounds known and yet to be discovered from these organisms is summarized and related to the producer if known or suspected (might it be down the food chain, de novo synthesised from the slug or an associated bacterium). Additionally, the collection of microorganisms for the discovery of natural products of pharmacological interest from this hotspot of biodiversity that is presented here contains more than 50 species that have never been investigated before in regard to bioactive secondary metabolites. This highlights the great potential of the sea slugs and the associated microorganisms for the discovery of natural products of pharmacological interest from this hotspot of biodiversity.


Assuntos
Produtos Biológicos/química , Animais , Biodiversidade , Humanos , Indonésia , Lesma Marinha/química
13.
PLoS One ; 12(10): e0182910, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29020043

RESUMO

Sacoglossan sea slugs are the only metazoans known to perform functional kleptoplasty, the sequestration and retention of functional chloroplasts within their digestive gland cells. Remarkably, a few species with this ability can survive starvation periods of 3-12 months likely due to their stolen chloroplasts. There are no reports of kleptoplast transfer from mother slug to either eggs or juveniles, demonstrating that each animal must independently acquire its kleptoplasts and develop the ability to maintain them within its digestive gland. We present here an investigation into the development of functional kleptoplasty in a long-term kleptoplast retaining species, Elysia timida. Laboratory-reared juvenile slugs of different post-metamorphic ages were placed in starvation and compared to 5 known short-term retaining slug species and 5 non-retaining slug species. The subsequent results indicate that functional kleptoplasty is not performed by E. timida until after 15 days post-metamorphosis and that by 25 days, these animals outlive many of the short-term retention species. Digestive activity was also monitored using lysosomal abundance as an indicator, revealing different patterns in starving juveniles versus adults. Starved juveniles were reintroduced to food to determine any differences in digestive activity when starvation ends, resulting in an increase in the number of kleptoplasts, but no overall change in lysosomal activity. By revealing some of the changes that occur during early development in these animals, which begin as non-kleptoplast-retaining and grow into long-term retaining slugs, this investigation provides a basis for future inquiries into the origin and development of this remarkable ability.


Assuntos
Cloroplastos/metabolismo , Digestão/fisiologia , Gastrópodes/fisiologia , Animais , Clorofila/metabolismo , Clorofila A , Comportamento Alimentar , Fluorometria , Longevidade , Lisossomos/metabolismo , Metamorfose Biológica , Microscopia Confocal , Especificidade da Espécie , Manejo de Espécimes , Inanição/metabolismo , Fatores de Tempo
14.
Front Microbiol ; 8: 1092, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659904

RESUMO

Nudibranchia, marine soft-bodied organisms, developed, due to the absence of a protective shell, different strategies to protect themselves against putative predators and fouling organisms. One strategy is to use chemical weapons to distract predators, as well as pathogenic microorganisms. Hence, these gastropods take advantage of the incorporation of chemical molecules. Thereby the original source of these natural products varies; it might be the food source, de novo synthesis from the sea slug, or biosynthesis by associated bacteria. These bioactive molecules applied by the slugs can become important drug leads for future medicinal drugs. To test the potential of the associated bacteria, the latter were isolated from their hosts, brought into culture and extracts were prepared and tested for antimicrobial activities. From 49 isolated bacterial strains 35 showed antibiotic activity. The most promising extracts were chosen for further testing against relevant pathogens. In that way three strains showing activity against methicillin resistant Staphylococcus aureus and one strain with activity against enterohemorrhagic Escherichia coli, respectively, were identified. The obtained results indicate that the sea slug associated microbiome is a promising source for bacterial strains, which hold the potential for the biotechnological production of antibiotics.

15.
Beilstein J Org Chem ; 13: 502-519, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28405231

RESUMO

Phyllodesmium longicirrum is the largest aeolidoidean species known to date, and extremely rich in terpenoid chemistry. Herein we report the isolation of a total of 19 secondary metabolites from a single specimen of this species, i.e., steroids 1-4, cembranoid diterpenes 5-13, complex biscembranoids 14 and 15, and the chatancin-type diterpenes 16-19. These compounds resemble those from soft corals of the genus Sarcophyton, of which to date, however, only S. trocheliophorum is described as a food source for P. longicirrum. Fish feeding deterrent activity was determined using the tropical puffer fish Canthigaster solandri, and showed activity for (2S)-isosarcophytoxide (10), cembranoid bisepoxide 12 and 4-oxochatancin (16). Determining the metabolome of P. longicirrum and its bioactivity, makes it evident that this seemingly vulnerable soft bodied animal is well protected from fish by its chemical arsenal.

16.
Front Zool ; 14: 4, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28115976

RESUMO

BACKGROUND: Solar-powered sea slugs are famed for their ability to survive starvation due to incorporated algal chloroplasts. It is well established that algal-derived carbon can be traced in numerous slug-derived compounds, showing that slugs utilize the photosynthates produced by incorporated plastids. Recently, a new hypothesis suggests that the photosynthates produced are not continuously made available to the slug. Instead, at least some of the plastid's photosynthetic products are stored in the plastid itself and only later become available to the slug. The long-term plastid-retaining slug, Elysia timida and its sole food source, Acetabularia acetabulum were examined to determine whether or not starch, a combination of amylose and amylopectin and the main photosynthate produced by A. acetabulum, is produced by the stolen plastids and whether it accumulates within individual kleptoplasts, providing an energy larder, made available to the slug at a later time. RESULTS: Histological sections of Elysia timida throughout a starvation period were stained with Lugol's Iodine solution, a well-known stain for starch granules in plants. We present here for the first time, an increase in amylose concentration, within the slug's digestive gland cells during a starvation period, followed by a sharp decrease. Chemically blocking photosynthesis in these tissues resulted in no observable starch, indicating that the starch in untreated animals is a product of photosynthetic activity. CONCLUSION: This suggests that kleptoplasts function as both, a nutritive producer and storage device, holding onto the polysaccharides they produce for a certain time until they are finally available and used by the starving slug to withstand extended starvation periods.

17.
Mitochondrial DNA B Resour ; 2(1): 130-131, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33473741

RESUMO

We present the complete mitochondrial genome sequence of Plakobranchus cf. ocellatus (Heterobranchia: Sacoglossa), a so-called 'solar-powered' sea slug with long-term retention of chloroplasts. The mitochondrial genome was 14,177 bp in length containing the standard set of 13 protein-coding genes, 2 rRNAs, and 22 tRNAs. The base composition of 27.3% A, 15.6% C, 18.6% G, and 38.5% T showed a strong A + T bias. The genome organization of P. cf. ocellatus is identical to the other sacoglossan mitogenomes sequenced so far, except for Ascobulla fragilis.

18.
PLoS One ; 11(7): e0157941, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27411060

RESUMO

Although several studies are devoted to determining the diversity of Antarctic heterobranch sea slugs, new species are still being discovered. Among nudibranchs, Doto antarctica Eliot, 1907 is the single species of this genus described from Antarctica hitherto, the type locality being the Ross Sea. Doto antarctica was described mainly using external features. During our Antarctic research on marine benthic invertebrates, we found D. antarctica in the Weddell Sea and Bouvet Island, suggesting a circumpolar distribution. Species affiliation is herein supported by molecular analyses using cytochrome c oxidase subunit I, 16S rRNA, and histone H3 markers. We redescribe D. antarctica using histology, micro-computed tomography (micro-CT), and 3D-reconstruction of the internal organs. Moreover, we describe a new, sympatric species, namely D. carinova Moles, Avila & Wägele n. sp., and provide an anatomical comparison between the two Antarctic Doto species. Egg masses in both species are also described here for the first time. We demonstrate that micro-CT is a useful tool for non-destructive anatomical description of valuable specimens. Furthermore, our high resolution micro-CT data reveal that the central nervous system of both Doto species possesses numerous accessory giant cells, suggested to be neurons herein. In addition, the phylogenetic tree of all Doto species sequenced to date suggests a scenario for the evolution of the reproductive system in this genus: bursa copulatrix seems to have been reduced and the acquisition of a distal connection of the oviduct to the nidamental glands is a synapomorphy of the Antarctic Doto species. Overall, the combination of thorough morphological and anatomical description and molecular analyses provides a comprehensive means to characterize and delineate species, thus suggesting evolutionary scenarios.


Assuntos
Gastrópodes/anatomia & histologia , Gastrópodes/classificação , Animais , Regiões Antárticas , Evolução Molecular , Feminino , Gastrópodes/genética , Especiação Genética , Imageamento Tridimensional , Masculino , Modelos Anatômicos , Filogenia , RNA Ribossômico 16S/genética , Simpatria , Microtomografia por Raio-X
19.
J Nat Prod ; 79(3): 611-5, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26649919

RESUMO

Phyllodesmium is a tropical marine slug genus with about 30 described species. None of them have a protective shell, and all of them feed on octocorals that are generally known to provide defensive compounds and thus help to defend the naked slugs against sympatric predators, such as fish, crabs, cephalopods, and echinoderms. Phyllodesmium longicirrum is the species that grows the biggest and that is least protected by camouflage on its respective food, usually a soft coral of the genus Sarcophyton. Investigation of the lipophilic extract of a single specimen of P. longicirrum from the Great Barrier Reef (Australia) led to the isolation of four new polycyclic diterpenes. Compound 1 showed significant deterrent activity in a fish feeding assay.


Assuntos
Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Gastrópodes/química , Animais , Antozoários , Austrália , Diterpenos/química , Biologia Marinha , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Comportamento Predatório
20.
Genome Biol Evol ; 7(9): 2602-7, 2015 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-26319575

RESUMO

Eukaryotic organelles depend on nuclear genes to perpetuate their biochemical integrity. This is true for mitochondria in all eukaryotes and plastids in plants and algae. Then how do kleptoplasts, plastids that are sequestered by some sacoglossan sea slugs, survive in the animals' digestive gland cells in the absence of the algal nucleus encoding the vast majority of organellar proteins? For almost two decades, lateral gene transfer (LGT) from algae to slugs appeared to offer a solution, but RNA-seq analysis, later supported by genome sequencing of slug DNA, failed to find any evidence for such LGT events. Yet, isolated reports continue to be published and are readily discussed by the popular press and social media, making the data on LGT and its support for kleptoplast longevity appear controversial. However, when we take a sober look at the methods used, we realize that caution is warranted in how the results are interpreted. There is no evidence that the evolution of kleptoplasty in sea slugs involves LGT events. Based on what we know about photosystem maintenance in embryophyte plastids, we assume kleptoplasts depend on nuclear genes. However, studies have shown that some isolated algal plastids are, by nature, more robust than those of land plants. The evolution of kleptoplasty in green sea slugs involves many promising and unexplored phenomena, but there is no evidence that any of these require the expression of slug genes of algal origin.


Assuntos
Evolução Molecular , Gastrópodes/genética , Plastídeos/genética , Animais , Transferência Genética Horizontal , Fotossíntese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...