Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zookeys ; 1087: 123-139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35437363

RESUMO

The woodlouse species Tylosmaindroni Giordani Soika, 1954 (Crustacea, Isopoda, Oniscidea) is redescribed from the Persian Gulf based on light and scanning electron microscopy. This species differs from the closely related T.exiguus Stebbing, 1910, from the Red Sea (coasts of Sudan and Eritrea), and Socotra Island, by pereopod 1 superior margin without a prominent projection and pleopod 2 endopod 2.3 times as long as exopod, vs. 3.6 in T.exiguus. A distribution map for T.maindroni is provided. In addition, we studied the molecular differentiation of five populations of T.maindroni from the Persian Gulf, based on partial cytochrome c oxidase subunit I (COI) gene sequences. The results revealed low levels of population structuring between the analyzed populations.

2.
Mol Ecol Resour ; 19(4): 900-928, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30977972

RESUMO

This study summarizes results of a DNA barcoding campaign on German Diptera, involving analysis of 45,040 specimens. The resultant DNA barcode library includes records for 2,453 named species comprising a total of 5,200 barcode index numbers (BINs), including 2,700 COI haplotype clusters without species-level assignment, so called "dark taxa." Overall, 88 out of 117 families (75%) recorded from Germany were covered, representing more than 50% of the 9,544 known species of German Diptera. Until now, most of these families, especially the most diverse, have been taxonomically inaccessible. By contrast, within a few years this study provided an intermediate taxonomic system for half of the German Dipteran fauna, which will provide a useful foundation for subsequent detailed, integrative taxonomic studies. Using DNA extracts derived from bulk collections made by Malaise traps, we further demonstrate that species delineation using BINs and operational taxonomic units (OTUs) constitutes an effective method for biodiversity studies using DNA metabarcoding. As the reference libraries continue to grow, and gaps in the species catalogue are filled, BIN lists assembled by metabarcoding will provide greater taxonomic resolution. The present study has three main goals: (a) to provide a DNA barcode library for 5,200 BINs of Diptera; (b) to demonstrate, based on the example of bulk extractions from a Malaise trap experiment, that DNA barcode clusters, labelled with globally unique identifiers (such as OTUs and/or BINs), provide a pragmatic, accurate solution to the "taxonomic impediment"; and (c) to demonstrate that interim names based on BINs and OTUs obtained through metabarcoding provide an effective method for studies on species-rich groups that are usually neglected in biodiversity research projects because of their unresolved taxonomy.


Assuntos
Ceratopogonidae/classificação , Ceratopogonidae/genética , Chironomidae/classificação , Chironomidae/genética , Código de Barras de DNA Taxonômico , Dípteros/classificação , Dípteros/genética , Animais , Monitorização de Parâmetros Ecológicos/métodos , Alemanha
3.
Mol Biol Evol ; 33(7): 1875-86, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27009209

RESUMO

Target DNA enrichment combined with high-throughput sequencing technologies is a powerful approach to probing a large number of loci in genomes of interest. However, software algorithms that explicitly consider nucleotide sequence information of target loci in multiple reference species for optimizing design of target enrichment baits to be applicable across a wide range of species have not been developed. Here we present an algorithm that infers target DNA enrichment baits from multiple nucleotide sequence alignments. By applying clustering methods and the combinatorial 1-center sequence optimization to bait design, we are able to minimize the total number of baits required to efficiently probe target loci in multiple species. Consequently, more loci can be probed across species with a given number of baits. Using transcript sequences of 24 apoid wasps (Hymenoptera: Crabronidae, Sphecidae) from the 1KITE project and the gene models of Nasonia vitripennis, we inferred 57,650, 120-bp-long baits for capturing 378 coding sequence sections of 282 genes in apoid wasps. Illumina reduced-representation library sequencing confirmed successful enrichment of the target DNA when applying these baits to DNA of various apoid wasps. The designed baits furthermore enriched a major fraction of the target DNA in distantly related Hymenoptera, such as Formicidae and Chalcidoidea, highlighting the baits' broad taxonomic applicability. The availability of baits with broad taxonomic applicability is of major interest in numerous disciplines, ranging from phylogenetics to biodiversity monitoring. We implemented our new approach in a software package, called BaitFisher, which is open source and freely available at https://github.com/cmayer/BaitFisher-package.git.


Assuntos
Sondas de DNA/química , Sondas de DNA/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/química , DNA/genética , Sondas de DNA/síntese química , Biblioteca Gênica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos , Software
4.
Arthropod Struct Dev ; 43(1): 87-95, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24275250

RESUMO

We report the discovery of a ventral plate in the basal and little-known chilognath millipede order Glomeridesmida. This ventral plate, interpreted here as a 'true sternite', is clearly separate from both the coxa and the more lateral stigma-carrying plates commonly referred to as 'diplopod sternites'. Therefore, the lateral, stigma-carrying plates of the Diplopoda, previously referred to as sternites, are not sternal elements, but subcoxal elements associated with the limb base. This discovery changes the nomenclature used for the ventral plates in Diplopoda, with the formerly named 'sternite' better referred to as 'stigma-carrying plate'. In helminthomorph Diplopoda, the stigma-carrying plates are apparently secondarily fused with the sternite. The main argument for the independent evolution of tracheae in insects and myriapods, the different location of their respective spiracles, no longer holds true. In all Myriapoda and Hexapoda the spiracles associated with subcoxal elements are located lateral to the limb base. This discovery shows that the arguments for an independent origin of tracheae in insects and myriapods are not uncontestable.


Assuntos
Artrópodes/ultraestrutura , Evolução Biológica , Animais , Feminino , Masculino , Microscopia Eletrônica de Varredura , Filogenia
5.
Zootaxa ; 3686: 501-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26473238

RESUMO

Cymodoce truncata (Leach, 1814), the type species of the genus, C. zanzibarensis (Stebbing, 1910) and C. richardsoniae (Nobili, 1906) are redescribed based on type specimens or topotypic material, and a neotype is designated for Cymodoce richardsoniae. A revised generic diagnosis and description is provided for the genus Cymodoce. Cymodoce delvarii sp. nov. is described from the subtidal zone of the Iranian coasts of the Persian Gulf.


Assuntos
Isópodes/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , Feminino , Oceano Índico , Isópodes/anatomia & histologia , Isópodes/crescimento & desenvolvimento , Masculino
6.
PLoS One ; 7(5): e36593, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22662120

RESUMO

The aim of our study was to test the robustness and efficiency of maximum likelihood with respect to different long branch effects on multiple-taxon trees. We simulated data of different alignment lengths under two different 11-taxon trees and a broad range of different branch length conditions. The data were analyzed with the true model parameters as well as with estimated and incorrect assumptions about among-site rate variation. If length differences between connected branches strongly increase, tree inference with the correct likelihood model assumptions can fail. We found that incorporating invariant sites together with Γ distributed site rates in the tree reconstruction (Γ+I) increases the robustness of maximum likelihood in comparison with models using only Γ. The results show that for some topologies and branch lengths the reconstruction success of maximum likelihood under the correct model is still low for alignments with a length of 100,000 base positions. Altogether, the high confidence that is put in maximum likelihood trees is not always justified under certain tree shapes even if alignment lengths reach 100,000 base positions.


Assuntos
Simulação por Computador , Modelos Genéticos , Filogenia , Funções Verossimilhança
7.
Biopreserv Biobank ; 9(1): 51-5, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24850206

RESUMO

The explicit aim of the DNA Bank Network is to close the divide between biological specimen collections and molecular sequence databases. It provides a technically optimized DNA and tissue collection service facility in the interest of all biological research, with access to well-documented DNA-containing samples and voucher specimens as well as to corresponding molecular data stored in public sequence databases. The Network enables scientists to (i) query and order DNA samples of organisms collected from natural habitats via a shared Web portal, (ii) store DNA samples for reference under optimal conditions after project completion or data publication, (iii) obtain DNA material to conduct new studies or to extend and complement previous investigations, and (iv) support good scientific practice as the deposition of DNA samples and related specimens facilitates the verification of published results.

8.
Front Zool ; 7: 26, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-20836845

RESUMO

BACKGROUND: The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI) gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous. RESULTS: We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97%) of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95%) of the studied Carabidae. CONCLUSION: Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.

9.
Mol Biol Evol ; 26(12): 2711-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19692666

RESUMO

The Remipedia are enigmatic crustaceans from anchialine cave systems, first described only 30 years ago, whose phylogenetic affinities are as yet unresolved. Here we report the sequence of hemocyanin from Speleonectes tulumensis Yager, 1987 (Remipedia, Speleonectidae). This is the first proof of the presence of this type of respiratory protein in a crustacean taxon other than Malacostraca. Speleonectes tulumensis hemocyanin consists of multiple distinct (at least three) subunits (StuHc1-3; Hc, hemocyanin). Surprisingly, the sequences are most similar to hexapod hemocyanins. Phylogenetic analyses showed that the S. tulumensis hemocyanin subunits StuHc1 and StuHc3 associate with the type 1 hexapod hemocyanin subunits, whereas StuHc2 associates with the type 2 subunits of hexapods. Together, remipede and hexapod hemocyanins are in the sister-group position to the hemocyanins of malacostracan crustaceans. Hemocyanins provide no indication of a close relationship of Myriapoda and Hexapoda but support Pancrustacea (Crustacea + Hexapoda). Our results also suggest that Crustacea are paraphyletic and that Hexapoda may have evolved from a Remipedia-like ancestor. Thus, Remipedia occupy a key position for the understanding of the evolution of hexapods, which are and have been one of the world's most speciose lineage of animals.


Assuntos
Crustáceos/classificação , Crustáceos/genética , Hemocianinas/química , Filogenia , Sequência de Aminoácidos , Animais , Teorema de Bayes , Hemocianinas/genética , Proteínas de Insetos/genética , Dados de Sequência Molecular , Consumo de Oxigênio/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética
10.
BMC Evol Biol ; 9: 119, 2009 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-19473484

RESUMO

BACKGROUND: Whenever different data sets arrive at conflicting phylogenetic hypotheses, only testable causal explanations of sources of errors in at least one of the data sets allow us to critically choose among the conflicting hypotheses of relationships. The large (28S) and small (18S) subunit rRNAs are among the most popular markers for studies of deep phylogenies. However, some nodes supported by this data are suspected of being artifacts caused by peculiarities of the evolution of these molecules. Arthropod phylogeny is an especially controversial subject dotted with conflicting hypotheses which are dependent on data set and method of reconstruction. We assume that phylogenetic analyses based on these genes can be improved further i) by enlarging the taxon sample and ii) employing more realistic models of sequence evolution incorporating non-stationary substitution processes and iii) considering covariation and pairing of sites in rRNA-genes. RESULTS: We analyzed a large set of arthropod sequences, applied new tools for quality control of data prior to tree reconstruction, and increased the biological realism of substitution models. Although the split-decomposition network indicated a high noise content in the data set, our measures were able to both improve the analyses and give causal explanations for some incongruities mentioned from analyses of rRNA sequences. However, misleading effects did not completely disappear. CONCLUSION: Analyses of data sets that result in ambiguous phylogenetic hypotheses demand for methods, which do not only filter stochastic noise, but likewise allow to differentiate phylogenetic signal from systematic biases. Such methods can only rely on our findings regarding the evolution of the analyzed data. Analyses on independent data sets then are crucial to test the plausibility of the results. Our approach can easily be extended to genomic data, as well, whereby layers of quality assessment are set up applicable to phylogenetic reconstructions in general.


Assuntos
Artrópodes/genética , Evolução Molecular , Modelos Genéticos , Filogenia , Animais , Conformação de Ácido Nucleico , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Alinhamento de Sequência , Análise de Sequência de RNA/métodos
11.
Proc Biol Sci ; 276(1658): 799-808, 2009 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-19033145

RESUMO

The Asellota are a highly variable group of Isopoda with many species in freshwater and marine shallow-water environments. However, in the deep sea, they show their most impressive radiation with a broad range of astonishing morphological adaptations and bizarre body forms. Nevertheless, the evolution and phylogeny of the deep-sea Asellota are poorly known because of difficulties in scoring morphological characters. In this study, the molecular phylogeny of the Asellota is evaluated for 15 marine shallow-water species and 101 deep-sea species, using complete 18S and partial 28S rDNA gene sequences. Our molecular data support the monophyly of most deep-sea families and give evidence for a multiple colonization of the deep sea by at least four major lineages of asellote isopods. According to our molecular data, one of these lineages indicates an impressive radiation in the deep sea. Furthermore, the present study rejects the monophyly of the family Janiridae, a group of plesiomorphic shallow-water Asellota, and several shallow-water and deep-sea genera (Acanthaspidia, Ianthopsis, Haploniscus, Echinozone, Eurycope, Munnopsurus and Syneurycope).


Assuntos
Ecossistema , Isópodes/genética , Filogenia , Animais , Sequência de Bases , DNA/genética , RNA Ribossômico 18S/genética
12.
Front Zool ; 5: 19, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19099566

RESUMO

BACKGROUND: The Falkland Islands and Patagonia are traditionally assigned to the Magellan Biogeographic Province. Most marine species in Falkland waters are also reported from southern Patagonia. It remains unclear if relatively immobile, marine benthic, shallow-water species maintain gene flow, and by what mechanism. Recurrent fluctuations in sea level during glacial cycles are regarded as a possible mechanism that might have allowed genetic exchange between the regions. However, the realized genetic exchange between the Falkland Islands and Patagonia has never been estimated. RESULTS: This study analyses the genetic structure of three populations of the marine shallow-water isopod Serolis paradoxa (Fabricius, 1775) from the Falkland Islands and southern Patagonia (central Strait of Magellan and the Atlantic opening) applying seven nuclear microsatellites and a fragment of the mitochondrial 16S rRNA gene. Both marker systems report highest genetic diversity for the population from the central Strait of Magellan and lowest for the Falkland Islands. The estimated effective population sizes were large for all populations studied. Significant differentiation was observed among all three populations. The magnitude of differentiation between Patagonia and the Falkland Islands (16S: uncorrected p-distance 2.1%; microsatellites: standardized F'ST > 0.86) was an order of magnitude higher than between populations from within Patagonia. This indicates that there is currently no effective gene flow for nominal S. paradoxa between these two regions and it has been absent for time exceeding the last glacial maximum. We argue that specimens from the Strait of Magellan and the Falkland Islands very likely represent two distinct species that separated in the mid-Pleistocene (about 1 MY BP). CONCLUSION: The results of this study indicate limited gene flow between distant populations of the brooding isopod Serolis paradoxa. The patterns of genetic diversity suggest that the only recently inundated Strait of Magellan was colonized by different source populations, most likely from Atlantic and Pacific coastal waters. Our results demonstrate that more systematic testing of shared faunal inventory and realized genetic exchange between Patagonia and the Falkland Islands is needed before a consensus concerning the position of the Falkland Islands relative to the Magellan zoogeographic province can be reached.

13.
BMC Evol Biol ; 7: 147, 2007 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-17725833

RESUMO

BACKGROUND: Published molecular phylogenies are usually based on data whose quality has not been explored prior to tree inference. This leads to errors because trees obtained with conventional methods suppress conflicting evidence, and because support values may be high even if there is no distinct phylogenetic signal. Tools that allow an a priori examination of data quality are rarely applied. RESULTS: Using data from published molecular analyses on the phylogeny of crustaceans it is shown that tree topologies and popular support values do not show existing differences in data quality. To visualize variations in signal distinctness, we use network analyses based on split decomposition and split support spectra. Both methods show the same differences in data quality and the same clade-supporting patterns. Both methods are useful to discover long-branch effects. We discern three classes of long branch effects. Class I effects consist of attraction of terminal taxa caused by symplesiomorphies, which results in a false monophyly of paraphyletic groups. Addition of carefully selected taxa can fix this effect. Class II effects are caused by drastic signal erosion. Long branches affected by this phenomenon usually slip down the tree to form false clades that in reality are polyphyletic. To recover the correct phylogeny, more conservative genes must be used. Class III effects consist of attraction due to accumulated chance similarities or convergent character states. This sort of noise can be reduced by selecting less variable portions of the data set, avoiding biases, and adding slower genes. CONCLUSION: To increase confidence in molecular phylogenies an exploratory analysis of the signal to noise ratio can be conducted with split decomposition methods. If long-branch effects are detected, it is necessary to discern between three classes of effects to find the best approach for an improvement of the raw data.


Assuntos
Evolução Molecular , Filogenia , Alinhamento de Sequência , Animais , Crustáceos/classificação , Crustáceos/genética , DNA Ribossômico/genética , Apresentação de Dados , Modelos Genéticos , RNA Ribossômico 18S/genética
14.
Mol Phylogenet Evol ; 30(3): 615-22, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15012942

RESUMO

Cuckoo wasps are a morphologically diverse group of Hymenoptera with parasitoid or cleptoparasitic life histories. In the present paper, we explore the phylogenetic signal in fragments of the mitochondrial genes LSU rRNA and COI to resolve the group's phylogeny. We analyzed sequence data of 33 species representing the taxa Cleptinae, Elampini, Parnopini, and Chrysidini. Most of the currently recognized relationships of major cuckoo wasp lineages are supported by the molecular data. A key difference concerns the phylogenetic position of the Euchroeus (=Brugmoia) group within the tribe Chrysidini. It seems likely that an erroneous interpretation of morphological characters has led to inappropriate rooting of that tribe. We suggest that species of the Euchroeus group be interpreted as forming the stem group of the Chrysidini and that the remaining genera of that tribe be united in a subordinated taxon. Our results imply that the evolution of anal dentition, of significance for breaking into sealed host nests otherwise not accessible to cuckoo wasps, already happened at the base of the Chrysidini and that an even number of anal teeth arose prior to an odd number.


Assuntos
Canal Anal/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , RNA Ribossômico 16S/genética , RNA Ribossômico/genética , Animais , Classificação , DNA/metabolismo , Bases de Dados como Assunto , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Estatística como Assunto , Vespas
15.
Proc Natl Acad Sci U S A ; 101(11): 3868-73, 2004 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-15004272

RESUMO

Remipedia are rare and ancient mandibulate arthropods inhabiting almost inaccessible submerged cave systems. Their phylogenetic position is still enigmatic and the subject of extremely controversial debates. To contribute arguments to this discussion, we analyzed the brain of Godzilliognomus frondosus Yager, 1989 (Remipedia, Godzilliidae) and provide a detailed 3D reconstruction of its anatomy. This reconstruction yielded the surprising finding that in comparison with the brain of other crustaceans such as representatives of the Branchiopoda and Maxillopoda the brain of G. frondosus is highly organized and well differentiated. It is matched in complexity only by the brain of "higher" crustaceans (Malacostraca) and Hexapoda. A phylogenetic analysis limited to brain anatomy across the Mandibulata strongly contradicts the prevailing hypothesis that the Remipedia are a basal, ancestral crustacean group but instead argues in favor of a remipede-malacostracan-hexapod clade and most likely a sister-group relationship of Remipedia and Malacostraca.


Assuntos
Encéfalo/anatomia & histologia , Crustáceos/anatomia & histologia , Filogenia , Animais , Comportamento Animal , Evolução Biológica , Crustáceos/genética
16.
Mol Phylogenet Evol ; 28(3): 536-51, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12927137

RESUMO

This contribution addresses two questions: which alignment patterns are causing non-monophyly of the Asellota and what is the phylogenetic history of this group? The Asellota are small benthic crustaceans occurring in most aquatic habitats. In view of the complex morphological apomorphies known for this group, monophyly of the Asellota has never been questioned. Using ssu rDNA sequences of outgroups and of 16 asellote species from fresh water, littoral marine habitats and from deep-sea localities, the early divergence between the lineages in fresh water and in the ocean, and the monophyly of the deep-sea taxon Munnopsidae are confirmed. Relative substitution rates of freshwater species are much lower than in other isopod species, rates being highest in some littoral marine genera (Carpias and Jaera). Furthermore, more sequence sites are variable in marine than in freshwater species, the latter conserve outgroup character states. Monophyly is recovered with parsimony methods, but not with distance and maximum likelihood analyses, which tear apart the marine from the freshwater species. The information content of alignments was studied with spectra of supporting positions. The scarcity of signal (=apomorphic nucleotides) supporting monophyly of the Asellota is attributed to a short stem-line of this group or to erosion of signal in fast evolving marine species. Parametric boostrapping in combination with spectra indicates that a tree model cannot explain the data and that monophyly of the Asellota should not be rejected even though many topologies do not recover this taxon.


Assuntos
Meio Ambiente , Evolução Molecular , Variação Genética , Isópodes/genética , Filogenia , Animais , Composição de Bases , DNA Ribossômico/genética , Água Doce , Funções Verossimilhança , Modelos Genéticos , Água do Mar , Análise de Sequência de DNA
17.
J Morphol ; 204(3): 281-293, 1990 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29865727

RESUMO

Asellus aquaticus is a freshwater isopod with an unusually long excretory duct of the maxillary gland. The ultrastructure of this gland is described in detail for the first time. Only one comparable description of an isopod excretory gland has been published until now (for a marine species). The gland is composed of an end sac (coelomosac) with podocytes which allow passive ultrafiltration by haemolymph pressure. The podocytes resorb material (probably proteins) from the primary urine. The opening to the excretory duct is controlled by a valve, which consists of muscular sphincter cells and larger valve cells; the latter protrude into the duct. The ultrastructure of cells in different regions of the excretory duct and of the terminal duct is described and correlated with the possible function of the organ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...