Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Resour Manag ; 1(3): 417-426, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38566747

RESUMO

While perovskite photovoltaic (PV) devices are on the verge of commercialization, promising methods to recycle or remanufacture fully encapsulated perovskite solar cells (PSCs) and modules are still missing. Through a detailed life-cycle assessment shown in this work, we identify that the majority of the greenhouse gas emissions can be reduced by re-using the glass substrate and parts of the PV cells. Based on these analytical findings, we develop a novel thermally assisted mechanochemical approach to remove the encapsulants, the electrode, and the perovskite absorber, allowing reuse of most of the device constituents for remanufacturing PSCs, which recovered nearly 90% of their initial performance. Notably, this is the first experimental demonstration of remanufacturing PSCs with an encapsulant and an edge-seal, which are necessary for commercial perovskite solar modules. This approach distinguishes itself from the "traditional" recycling methods previously demonstrated in perovskite literature by allowing direct reuse of bulk materials with high environmental impact. Thus, such a remanufacturing strategy becomes even more favorable than recycling, and it allows us to save up to 33% of the module's global warming potential. Remarkably, this process most likely can be universally applied to other PSC architectures, particularly n-i-p-based architectures that rely on inorganic metal oxide layers deposited on glass substrates. Finally, we demonstrate that the CO2-footprint of these remanufactured devices can become less than 30 g/kWh, which is the value for state-of-the-art c-Si PV modules, and can even reach 15 g/kWh assuming a similar lifetime.

2.
Energy Environ Sci ; 17(4): 1549-1558, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38384422

RESUMO

Chemical environment and precursor-coordinating molecular interactions within a perovskite precursor solution can lead to important implications in structural defects and crystallization kinetics of a perovskite film. Thus, the opto-electronic quality of such films can be boosted by carefully fine-tuning the coordination chemistry of perovskite precursors via controllable introduction of additives, capable of forming intermediate complexes. In this work, we employed a new type of ligand, namely 1-phenylguanidine (PGua), which coordinates strongly with the PbI2 complexes in the perovskite precursor, forming new intermediate species. These strong interactions effectively retard the perovskite crystallization process and form homogeneous films with enlarged grain sizes and reduced density of defects. In combination with an interfacial treatment, the resulted champion devices exhibit a 24.6% efficiency with outstanding operational stability. Unprecedently, PGua can be applied in various PSCs with different perovskite compositions and even in both configurations: n-i-p and p-i-n, highlighting the universality of this ligand.

3.
Small ; 20(9): e2305437, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37863807

RESUMO

Organic Photovoltaics (OPV) is a very promising technology to harvest artificial illumination and power smart devices of the Internet of Things (IoT). Efficiencies as high as 30.2% have been reported for OPVs under warm white light-emitting diode (LED) light. This is due to the narrow spectrum of indoor light, which leads to an optimal bandgap of ≈1.9 eV. Under full sunlight, OPV devices often suffer from poor stability compared to the established inorganic PV technologies such as crystalline silicon. This study focuses on a potentially very cost-effective Indium Tin Oxide (ITO) free cell stack with absorber materials processed from non-halogenated solvents. These organic solar cells and modules with efficiencies up to 21% can already achieve remarkable stabilities under typical indoor illumination. Aging under 50,000 lux LED lighting leads to very little degradation after more than 11 000 h. This light dose corresponds to more than 110 years under 500 lux. For modules encapsulated with a flexible barrier, extrapolated lifetimes of more than 41 years are achieved. This shows that OPV is mature for the specific application under indoor illumination. Due to the large number of potential organic semiconducting materials, further efficiency increase can be expected.

4.
Chemistry ; 29(60): e202301482, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37488067

RESUMO

Surface modification of indium tin oxide (ITO) electrodes with organic molecules is known to tune their work function which results in higher charge carrier selectivity in corresponding organic electronic devices and hence influences the performance of organic solar cells. In recent years, N-heterocyclic carbenes (NHCs) have also been proven to be capable to modify the work function of metals and semimetals compared to the unfunctionalized surface via the formation of strong covalent bonds. In this report, we have designed and performed the modification of the ITO surface with NHC by using the zwitterionic bench stable IPr-CO2 as the NHC precursor, applied via spin coating. Upon modification, the work function of ITO electrodes was reduced significantly which resulted in electron selective contacts in corresponding organic photovoltaic devices. In addition, various characterization techniques and analytical methods are used to elucidate the nature of the bound species and the corresponding binding mechanism of the material to the ITO surface.

5.
Macromol Rapid Commun ; : e2200699, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333908

RESUMO

The increasing energy demand for diverse applications requires new types of devices and materials. Multifunctional materials that can fulfill different roles are of high interest as they can allow fabricating devices that can both convert and store energy. Herein, organic donor-acceptor redox polymers that can function as charge storage materials in batteries and as donor materials in bulk heterojunction (BHJ) photovoltaic devices are investigated. Based on its reversible redox chemistry, phenothiazine is used as the main building block in the conjugated copolymer design and combined with diketopyrrolopyrrol and benzothiadiazole as electron-poor comonomers to shift the optical absorption into the visible region. The resulting polymers show excellent cycling stability as positive electrode materials in lithium-organic batteries at discharge potentials of 3.6-3.7 V versus Li/Li+ as well as good performances in BHJ solar cells with up to 1.9% power conversion efficiency. This study shows that the design of such multifunctional materials is possible, however, that it also faces challenges, as essential properties for good device function can lead to diametrically opposite requirements in materials design.

6.
ACS Appl Mater Interfaces ; 12(25): 28404-28415, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32476409

RESUMO

The nanoscale morphology of polymer blends is a key parameter to reach high efficiency in bulk heterojunction solar cells. Thereby, research typically focusing on optimal blend morphologies while studying nonoptimized blends may give insight into blend designs that can prove more robust against morphology defects. Here, we focus on the direct correlation of morphology and device performance of thieno[3,4-b]-thiophene-alt-benzodithiophene (PTB7):[6,6]phenyl C71 butyric acid methyl ester (PC71BM) bulk heterojunction (BHJ) blends processed without additives in different donor/acceptor weight ratios. We show that while blends of a 1:1.5 ratio are composed of large donor-enriched and fullerene domains beyond the exciton diffusion length, reducing the ratio below 1:0.5 leads to blends composed purely of polymer-enriched domains. Importantly, the photocurrent density in such blends can reach values between 45 and 60% of those reached for fully optimized blends using additives. We provide here direct visual evidence that fullerenes in the donor-enriched domains are not distributed homogeneously but fluctuate locally. To this end, we performed compositional nanoscale morphology analysis of the blend using spectroscopic imaging of low-energy-loss electrons using a transmission electron microscope. Charge transport measurement in combination with molecular dynamics simulations shows that the fullerene substructures inside the polymer phase generate efficient electron transport in the polymer-enriched phase. Furthermore, we show that the formation of densely packed regions of fullerene inside the polymer phase is driven by the PTB7:PC71BM enthalpy of mixing. The occurrence of such a nanoscale network of fullerene clusters leads to a reduction of electron trap states and thus efficient extraction of photocurrent inside the polymer domain. Suitable tuning of the polymer-acceptor interaction can thus introduce acceptor subnetworks in polymer-enriched phases, improving the tolerance for high-efficiency BHJ toward morphological defects such as donor-enriched domains exceeding the exciton diffusion length.

7.
J Phys Chem Lett ; 10(12): 3473-3480, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31146523

RESUMO

Charge extraction in organic solar cells (OSCs) is commonly believed to be limited by bimolecular recombination of photogenerated charges. However, the fill factor of OSCs is usually almost entirely governed by recombination processes that scale with the first order of the light intensity. This linear loss was often interpreted to be a consequence of geminate or trap-assisted recombination. Numerical simulations show that this linear dependence is a direct consequence of the large amount of excess dark charge near the contact. The first-order losses increase with decreasing mobility of minority carriers, and we discuss the impact of several material and device parameters on this loss mechanism. This work highlights that OSCs are especially vulnerable to injected charges as a result of their poor charge transport properties. This implies that dark charges need to be better accounted for when interpreting electro-optical measurements and charge collection based on simple figures of merit.

8.
Nat Commun ; 9(1): 3631, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194300

RESUMO

Generation and recombination of electrons and holes in organic solar cells occurs via charge transfer states located at the donor/acceptor interface. The energy of these charge transfer states is a crucial factor for the attainable open-circuit voltage and its correct determination is thus of utmost importance for a detailed understanding of such devices. This work reports on drastic changes of electroluminescence spectra of bulk heterojunction organic solar cells upon variation of the absorber layer thickness. It is shown that optical thin-film effects have a large impact on optical out-coupling of luminescence radiation for devices made from different photoactive materials, in configurations with and without indium tin oxide. A scattering matrix approach is presented which accurately reproduces the observed effects and thus delivers the radiative recombination spectra corrected for the wavelength-dependent out-coupling. This approach is proven to enable the correct determination of charge transfer state energies.

9.
Sci Rep ; 7(1): 14899, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097712

RESUMO

Relating crystallization of the absorber layer in a perovskite solar cell (PSC) to the device performance is a key challenge for the process development and in-depth understanding of these types of high efficient solar cells. A novel approach that enables real-time photo-physical and electrical characterization using a graphite-based PSC is introduced in this work. In our graphite-based PSC, the device architecture of porous monolithic contact layers creates the possibility to perform photovoltaic measurements while the perovskite crystallizes within this scaffold. The kinetics of crystallization in a solution based 2-step formation process has been analyzed by real-time measurement of the external photon to electron quantum efficiency as well as the photoluminescence emission spectra of the solar cell. With this method it was in particular possible to identify a previously overlooked crystallization stage during the formation of the perovskite absorber layer. This stage has significant influence on the development of the photocurrent, which is attributed to the formation of electrical pathways between the electron and hole contact, enabling efficient charge carrier extraction. We observe that in contrast to previously suggested models, the perovskite layer formation is indeed not complete with the end of crystal growth.

10.
ACS Appl Mater Interfaces ; 9(36): 30567-30574, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28834429

RESUMO

The most efficient organic-inorganic perovskite solar cells (PSCs) contain the conventional n-i-p mesoscopic device architecture using a semiconducting TiO2 scaffold combined with a compact TiO2 blocking layer for selective electron transport. These devices achieve high power conversion efficiencies (15-22%) but mainly require high-temperature sintering (>450 °C), which is not possible for temperature-sensitive substrates. Thus far, comparably little effort has been spent on alternative low-temperature (<150 °C) routes to realize high-efficiency TiO2-based PSCs; instead, other device architectures have been promoted for low-temperature processing. In this paper the compatibility of the conventional mesoscopic TiO2 device architecture with low-temperature processing is presented for the first time with the combination of electron beam evaporation for the compact TiO2 and UV treatment for the mesoporous TiO2 layer. Vacuum evaporation is introduced as an excellent deposition technique of uniform compact TiO2 layers, adapting smoothly to the rough fluorine-doped tin oxide substrate surface. Effective removal of organic binders by UV light is shown for the mesoporous scaffold. Entirely low-temperature-processed PSCs with TiO2 scaffold reach encouraging stabilized efficiencies of up to 18.2%. This process fulfills all requirements for monolithic tandem devices with high-efficiency silicon heterojunction solar cells as the bottom cell.

11.
Angew Chem Int Ed Engl ; 54(26): 7707-10, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-25959127

RESUMO

Time-resolved electron paramagnetic resonance (TREPR) spectroscopy is shown to be a powerful tool to characterize triplet excitons of conjugated polymers. The resulting spectra are highly sensitive to the orientation of the molecule. In thin films cast on PET film, the molecules' orientation with respect to the surface plane can be determined, providing access to sample morphology on a microscopic scale. Surprisingly, the conjugated polymer investigated here, a promising material for organic photovoltaics, exhibits ordering even in bulk samples. Orientation effects may significantly influence the efficiency of solar cells, thus rendering proper control of sample morphology highly important.

12.
Nat Commun ; 6: 6951, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25907581

RESUMO

This work elucidates the impact of charge transport on the photovoltaic properties of organic solar cells. Here we show that the analysis of current-voltage curves of organic solar cells under illumination with the Shockley equation results in values for ideality factor, photocurrent and parallel resistance, which lack physical meaning. Drift-diffusion simulations for a wide range of charge-carrier mobilities and illumination intensities reveal significant carrier accumulation caused by poor transport properties, which is not included in the Shockley equation. As a consequence, the separation of the quasi Fermi levels in the organic photoactive layer (internal voltage) differs substantially from the external voltage for almost all conditions. We present a new analytical model, which considers carrier transport explicitly. The model shows excellent agreement with full drift-diffusion simulations over a wide range of mobilities and illumination intensities, making it suitable for realistic efficiency predictions for organic solar cells.

13.
Polymers (Basel) ; 8(1)2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-30979099

RESUMO

We report on the degradation of organic photovoltaic (OPV) cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency and fill factor were determined from IV curves collected at regular intervals over six to eight months. Similarly prepared devices were measured indoors, outdoors, and after dark storage. Device architectures are compared. Cells kept indoors performed better than outdoors due to the lack of temperature and humidity extremes. Encapsulated cells performed better due to the minimal oxidation. Some devices showed steady aging but many failed catastrophically due to corrosion of electrodes not active device layers. Degradation of cells kept in dark storage was minimal over periods up to one year.

14.
Phys Chem Chem Phys ; 14(33): 11824-45, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22828664

RESUMO

This work is part of the inter-laboratory collaboration to study the stability of seven distinct sets of state-of-the-art organic photovoltaic (OPV) devices prepared by leading research laboratories. All devices have been shipped to and degraded at RISØ-DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. In this work, we apply the Incident Photon-to-Electron Conversion Efficiency (IPCE) and the in situ IPCE techniques to determine the relation between solar cell performance and solar cell stability. Different ageing conditions were considered: accelerated full sun simulation, low level indoor fluorescent lighting and dark storage. The devices were also monitored under conditions of ambient and inert (N(2)) atmospheres, which allows for the identification of the solar cell materials more susceptible to degradation by ambient air (oxygen and moisture). The different OPVs configurations permitted the study of the intrinsic stability of the devices depending on: two different ITO-replacement alternatives, two different hole extraction layers (PEDOT:PSS and MoO(3)), and two different P3HT-based polymers. The response of un-encapsulated devices to ambient atmosphere offered insight into the importance of moisture in solar cell performance. Our results demonstrate that the IPCE and the in situ IPCE techniques are valuable analytical methods to understand device degradation and solar cell lifetime.

15.
Phys Chem Chem Phys ; 14(33): 11780-99, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22829118

RESUMO

The present work is the fourth (and final) contribution to an inter-laboratory collaboration that was planned at the 3rd International Summit on Organic Photovoltaic Stability (ISOS-3). The collaboration involved six laboratories capable of producing seven distinct sets of OPV devices that were degraded under well-defined conditions in accordance with the ISOS-3 protocols. The degradation experiments lasted up to 1830 hours and involved more than 300 cells on more than 100 devices. The devices were analyzed and characterized at different points of their lifetimes by a large number of non-destructive and destructive techniques in order to identify specific degradation mechanisms responsible for the deterioration of the photovoltaic response. Work presented herein involves time-of-flight secondary ion mass spectrometry (TOF-SIMS) in order to study chemical degradation in-plane as well as in-depth in the organic solar cells. Various degradation mechanisms were investigated and correlated with cell performance. For example, photo-oxidation of the active material was quantitatively studied as a function of cell performance. The large variety of cell architectures used (some with and some without encapsulation) enabled valuable comparisons and important conclusions to be drawn on degradation behaviour. This comprehensive investigation of OPV stability has significantly advanced the understanding of degradation behaviour in OPV devices, which is an important step towards large scale application of organic solar cells.

16.
J Phys Chem B ; 116(1): 154-9, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22201323

RESUMO

Branched conjugated architectures should possess the advantage of isotropic charge transport compared to conventional linear conjugated polymers, as for example poly(3-hexylthiophene) (P3HT) which is commonly used in organic solar cells. This contribution investigates the optoelectronic properties of branched poly(thiophene)s p3T and p4T synthesized in a straightforward one-pot procedure by oxidative coupling of branched trithiophene and tetrathiophene monomers with FeCl(3). These polymers can be regarded as model systems for ideal amorphous conjugated materials. Optical characterization in solution and in thin films together with cyclic voltammetry data suggests the applicability of these materials for the use in organic solar cell devices. In particular, the HOMO and LUMO levels of the branched polythiophenes are shifted to lower energy values as compared to linear P3HT. Field effect mobilities are in the order of 10(-4) cm(2)/(V s). A first optimization of solar cell devices based on the branched polythiophene materials in combination with PCBM as acceptor resulted in efficiencies of 0.6% with open-circuit voltages being about 30% higher (up to 714 mV) than normally found with P3HT.

17.
Chemphyschem ; 9(5): 793-8, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18338345

RESUMO

A new, extremely simple concept for the use of energy transfer as a means to the enhancement of light absorption and current generation in the dye solar cell (DSC) is presented. This model study is based upon a carboxy-functionalized 4-aminonaphthalimide dye (carboxy-fluorol) as donor, and (NBu4)2[Ru(dcbpy)2(NCS)2] (N719) as acceptor chromophores. A set of three different devices is assembled containing either exclusively carboxy-fluorol or N719, or a mixture of both. This set of transparent devices is characterized via IV-measurements under AM1.5G and monochromatic illumination and their light-harvesting and external quantum efficiencies (LHE and EQE, respectively) are determined as well. It is shown that the device containing only the donor chromophore has a marginal power conversion efficiency, thus indicating that carboxy-fluorol is a poor sensitizer for the DSC. Cyclovoltametric measurements show that the poor sensitization ability arises from the kinetic inhibition of electron injection into the TiO2 conduction band. Comparing the spectral properties of the DSCs assembled presently, however, demonstrates that light absorbed by carboxy-fluorol is almost quantitatively contributing to the photocurrent if N719 is present as an additional sensitizer. In this case, N719 acts as a catalyst for the sensitization of TiO2 by carboxy-fluorol in addition to being a photosensitizer. Evaluation of the maximum output power under blue illumination shows that the introduction of an energy-donor moiety via coadsorption, leads to a significant increase in the monochromatic maximum output power. This result demonstrates that energy transfer between coadsorbed chromophores could be useful for the generation of current in dye-sensitized solar cells.


Assuntos
Corantes , Elétrons , Transferência Ressonante de Energia de Fluorescência , Energia Solar , Adsorção , Cinética , Fotoquímica , Semicondutores , Titânio
18.
Chemphyschem ; 8(10): 1548-56, 2007 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-17546710

RESUMO

A new bichromophoric dyad based on an alkyl-functionalized aminonaphthalimide as energy-donor chromophore and [Ru(dcbpy)2(acac)]Cl (dcbpy=4,4'-dicarboxybipyridine, acac=acetylacetonato) as energy acceptor and sensitizing chromophore is synthesized. Efficient quenching of the donor-chromophore emission is observed in solution, presumably due to resonant energy transfer. This dyad is then used as a sensitizer in a dye solar cell. By comparing the spectral properties of transparent dye solar cells sensitized with the dyad and [Ru(dcbpy)2(acac)]Cl, it is possible to demonstrate that photons absorbed by the donor moiety also contribute significantly to the generation of current. Instead of using acceptor luminescence as a probe, enhanced photocurrent generation is employed to estimate the energy-transfer efficiency. Fitting theoretical to experimental external quantum efficiency functions gives a value for the energy-transfer efficiency of 85 %. Evaluation of the maximum output power of dye solar cells sensitized with the dyad and [Ru(dcbpy)2(acac)]Cl showed, under selective illumination at the absorption maximum of the donor chromophore, that the introduction of the energy-donor moiety leads to a significant increase in the monochromatic maximum output power under blue illumination. This result demonstrates the usefulness of energy transfer for the generation of current in dye-sensitized solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...