Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 108(1-1): 014404, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37583206

RESUMO

Intracellular protein patterns regulate a variety of vital cellular processes such as cell division and motility, which often involve dynamic cell-shape changes. These changes in cell shape may in turn affect the dynamics of pattern-forming proteins, hence leading to an intricate feedback loop between cell shape and chemical dynamics. While several computational studies have examined the rich resulting dynamics, the underlying mechanisms are not yet fully understood. To elucidate some of these mechanisms, we explore a conceptual model for cell polarity on a dynamic one-dimensional manifold. Using concepts from differential geometry, we derive the equations governing mass-conserving reaction-diffusion systems on time-evolving manifolds. Analyzing these equations mathematically, we show that dynamic shape changes of the membrane can induce pattern-forming instabilities in parts of the membrane, which we refer to as regional instabilities. Deformations of the local membrane geometry can also (regionally) suppress pattern formation and spatially shift already existing patterns. We explain our findings by applying and generalizing the local equilibria theory of mass-conserving reaction-diffusion systems. This allows us to determine a simple onset criterion for geometry-induced pattern-forming instabilities, which is linked to the phase-space structure of the reaction-diffusion system. The feedback loop between membrane shape deformations and reaction-diffusion dynamics then leads to a surprisingly rich phenomenology of patterns, including oscillations, traveling waves, and standing waves, even if these patterns do not occur in systems with a fixed membrane shape. Our paper reveals that the local conformation of the membrane geometry acts as an important dynamical control parameter for pattern formation in mass-conserving reaction-diffusion systems.

2.
Proc Natl Acad Sci U S A ; 119(33): e2206888119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35960842

RESUMO

Self-organized pattern formation is vital for many biological processes. Reaction-diffusion models have advanced our understanding of how biological systems develop spatial structures, starting from homogeneity. However, biological processes inherently involve multiple spatial and temporal scales and transition from one pattern to another over time, rather than progressing from homogeneity to a pattern. To deal with such multiscale systems, coarse-graining methods are needed that allow the dynamics to be reduced to the relevant degrees of freedom at large scales, but without losing information about the patterns at small scales. Here, we present a semiphenomenological approach which exploits mass conservation in pattern formation, and enables reconstruction of information about patterns from the large-scale dynamics. The basic idea is to partition the domain into distinct regions (coarse grain) and determine instantaneous dispersion relations in each region, which ultimately inform about local pattern-forming instabilities. We illustrate our approach by studying the Min system, a paradigmatic model for protein pattern formation. By performing simulations, we first show that the Min system produces multiscale patterns in a spatially heterogeneous geometry. This prediction is confirmed experimentally by in vitro reconstitution of the Min system. Using a recently developed theoretical framework for mass-conserving reaction-diffusion systems, we show that the spatiotemporal evolution of the total protein densities on large scales reliably predicts the pattern-forming dynamics. Our approach provides an alternative and versatile theoretical framework for complex systems where analytical coarse-graining methods are not applicable, and can, in principle, be applied to a wide range of systems with an underlying conservation law.


Assuntos
Adenosina Trifosfatases , Proteínas de Ciclo Celular , Proteínas de Escherichia coli , Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/química , Difusão , Proteínas de Escherichia coli/química , Modelos Teóricos
3.
mBio ; 12(2)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849976

RESUMO

Division site selection is a vital process to ensure generation of viable offspring. In many rod-shaped bacteria, a dynamic protein system, termed the Min system, acts as a central regulator of division site placement. The Min system is best studied in Escherichia coli, where it shows a remarkable oscillation from pole to pole with a time-averaged density minimum at midcell. Several components of the Min system are conserved in the Gram-positive model organism Bacillus subtilis However, in B. subtilis, it is commonly believed that the system forms a stationary bipolar gradient from the cell poles to midcell. Here, we show that the Min system of B. subtilis localizes dynamically to active sites of division, often organized in clusters. We provide physical modeling using measured diffusion constants that describe the observed enrichment of the Min system at the septum. Mathematical modeling suggests that the observed localization pattern of Min proteins corresponds to a dynamic equilibrium state. Our data provide evidence for the importance of ongoing septation for the Min dynamics, consistent with a major role of the Min system in controlling active division sites but not cell pole areas.IMPORTANCE The molecular mechanisms that help to place the division septum in bacteria is of fundamental importance to ensure cell proliferation and maintenance of cell shape and size. The Min protein system, found in many rod-shaped bacteria, is thought to play a major role in division site selection. It was assumed that there are strong differences in the functioning and in the dynamics of the Min system in E. coli and B. subtilis Most previous attempts to address Min protein dynamics in B. subtilis have been hampered by the use of overexpression constructs. Here, functional fusions to Min proteins have been constructed by allelic exchange and state-of-the-art imaging techniques allowed to unravel an unexpected fast dynamic behavior of the B. subtilis Min system. Our data show that the molecular mechanisms leading to Min protein dynamics are not fundamentally different in E. coli and B. subtilis.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/genética , Modelos Teóricos
4.
Nat Commun ; 11(1): 539, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988277

RESUMO

In the Caenorhabditis elegans zygote, PAR protein patterns, driven by mutual anatagonism, determine the anterior-posterior axis and facilitate the redistribution of proteins for the first cell division. Yet, the factors that determine the selection of the polarity axis remain unclear. We present a reaction-diffusion model in realistic cell geometry, based on biomolecular reactions and accounting for the coupling between membrane and cytosolic dynamics. We find that the kinetics of the phosphorylation-dephosphorylation cycle of PARs and the diffusive protein fluxes from the cytosol towards the membrane are crucial for the robust selection of the anterior-posterior axis for polarisation. The local ratio of membrane surface to cytosolic volume is the main geometric cue that initiates pattern formation, while the choice of the long-axis for polarisation is largely determined by the length of the aPAR-pPAR interface, and mediated by processes that minimise the diffusive fluxes of PAR proteins between cytosol and membrane.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Polaridade Celular , Animais , Divisão Celular Assimétrica , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Biologia Computacional , Citosol/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Cinética , Modelos Biológicos , Fosforilação , Transdução de Sinais , Termodinâmica
5.
Nat Commun ; 10(1): 3305, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341165

RESUMO

One enigma in biology is the generation, sensing and maintenance of membrane curvature. Curvature-mediating proteins have been shown to induce specific membrane shapes by direct insertion and nanoscopic scaffolding, while the cytoskeletal motors exert forces indirectly through microtubule and actin networks. It remains unclear, whether the manifold direct motorprotein-lipid interactions themselves constitute another fundamental route to remodel the membrane shape. Here we show, combining super-resolution-fluorescence microscopy and membrane-reshaping nanoparticles, that curvature-dependent lipid interactions of myosin-VI on its own, remarkably remodel the membrane geometry into dynamic spatial patterns on the nano- to micrometer scale. We propose a quantitative theoretical model that explains this dynamic membrane sculpting mechanism. The emerging route of motorprotein-lipid interactions reshaping membrane morphology by a mechanism of feedback and instability opens up hitherto unexplored avenues of membrane remodelling and links cytoskeletal motors to early events in the sequence of membrane sculpting in eukaryotic cell biology.


Assuntos
Membrana Celular/metabolismo , Cadeias Pesadas de Miosina/fisiologia , Membrana Celular/ultraestrutura , Bicamadas Lipídicas/química , Modelos Teóricos , Cadeias Pesadas de Miosina/química , Nanopartículas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...