Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 750456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222321

RESUMO

Although climate change is expected to increase the extent of drylands worldwide, the effect of drought on the soil microbiome is still insufficiently understood as for dominant but little characterized phyla like the Acidobacteria. In the present study the active acidobacterial communities of Namibian soils differing in type, physicochemical parameters, and land use were characterized by high-throughput sequencing. Water content, pH, major ions and nutrients were distinct for sandy soils, woodlands or dry agriculture on loamy sands. Soils were repeatedly sampled over a 2-year time period and covered consecutively a strong rainy, a dry, a normal rainy and a weak rainy season. The increasing drought had differential effects on different soils. Linear modeling of the soil water content across all sampling locations and sampling dates revealed that the accumulated precipitation of the preceding season had only a weak, but statistically significant effect, whereas woodland and irrigation exerted a strong positive effect on water content. The decrease in soil water content was accompanied by a pronounced decrease in the fraction of active Acidobacteria (7.9-0.7%) while overall bacterial community size/cell counts remained constant. Notably, the strongest decline in the relative fraction of Acidobacteria was observed after the first cycle of rainy and dry season, rather than after the weakest rainy season at the end of the observation period. Over the 2-year period, also the ß-diversity of soil Acidobacteria changed. During the first year this change in composition was related to soil type (loamy sand) and land use (woodland) as explanatory variables. A total of 188 different acidobacterial sequence variants affiliated with the "Acidobacteriia," Blastocatellia, and Vicinamibacteria changed significantly in abundance, suggesting either drought sensitivity or formation of dormant cell forms. Comparative physiological testing of 15 Namibian isolates revealed species-specific and differential responses in viability during long-term continuous desiccation or drying-rewetting cycles. These different responses were not determined by phylogenetic affiliation and provide a first explanation for the effect of drought on soil Acidobacteria. In conclusion, the response of acidobacterial communities to water availability is non-linear, most likely caused by the different physiological adaptations of the different taxa present.

2.
Front Microbiol ; 11: 1391, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695081

RESUMO

Spatial and temporal processes shaping microbial communities are inseparably linked but rarely studied together. By Illumina 16S rRNA sequencing, we monitored soil bacteria in 360 stations on a 100 square meter plot distributed across six intra-annual samplings in a rarely managed, temperate grassland. Using a multi-tiered approach, we tested the extent to which stochastic or deterministic processes influenced the composition of local communities. A combination of phylogenetic turnover analysis and null modeling demonstrated that either homogenization by unlimited stochastic dispersal or scenarios, in which neither stochastic processes nor deterministic forces dominated, explained local assembly processes. Thus, the majority of all sampled communities (82%) was rather homogeneous with no significant changes in abundance-weighted composition. However, we detected strong and uniform taxonomic shifts within just nine samples in early summer. Thus, community snapshots sampled from single points in time or space do not necessarily reflect a representative community state. The potential for change despite the overall homogeneity was further demonstrated when the focus shifted to the rare biosphere. Rare OTU turnover, rather than nestedness, characterized abundance-independent ß-diversity. Accordingly, boosted generalized additive models encompassing spatial, temporal and environmental variables revealed strong and highly diverse effects of space on OTU abundance, even within the same genus. This pure spatial effect increased with decreasing OTU abundance and frequency, whereas soil moisture - the most important environmental variable - had an opposite effect by impacting abundant OTUs more than the rare ones. These results indicate that - despite considerable oscillation in space and time - the abundant and resident OTUs provide a community backbone that supports much higher ß-diversity of a dynamic rare biosphere. Our findings reveal complex interactions among space, time, and environmental filters within bacterial communities in a long-established temperate grassland.

3.
Int J Syst Evol Microbiol ; 66(9): 3355-3366, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27255677

RESUMO

Three novel strains of the phylum Acidobacteria (Ac_11_E3T, Ac_12_G8T and Ac_16_C4T) were isolated from Namibian semiarid savanna soils by a high-throughput cultivation approach using low-nutrient growth media. 16S rRNA gene sequence analysis placed all three strains in the order Blastocatellales of the class Blastocatellia (Acidobacteria subdivision 4). However, 16S rRNA gene sequence similarities to their closest relative Pyrinomonas methylaliphatogenes K22T were ≤90 %. Cells of strains Ac_11_E3T, Ac_12_G8T and Ac_16_C4T were Gram-staining-negative and non-motile and divided by binary fission. Ac_11_E3T and Ac_16_C4T formed white colonies, while those of Ac_12_G8T were orange-yellowish. All three strains were aerobic chemoorganoheterotrophic mesophiles with a broad pH range for growth. All strains used a very limited spectrum of carbon and energy sources for growth, with a preference for complex proteinaceous substrates. The major respiratory quinone was MK-8. The major shared fatty acid was iso-C15 : 0. The DNA G+C contents of strains Ac_11_E3T, Ac_12_G8T and Ac_16_C4T were 55.9 mol%, 66.9 mol% and 54.7 mol%, respectively. Based on these characteristics, the two novel genera Brevitaleagen. nov. and Arenimicrobiumgen. nov. are proposed, harboring the novel species Brevitaleaaridisoli sp. nov. (Ac_11_E3T=DSM 27934T=LMG 28618T), Brevitalea deliciosa sp. nov. (Ac_16_C4T=DSM 29892T=LMG 28995T) and Arenimicrobium luteum sp. nov. (Ac_12_G8T=DSM 26556T=LMG 29166T), respectively. Since these novel genera are only distantly related to established families, we propose the novel family Pyrinomonadaceaefam. nov. that accommodates the proposed genera and the genus Pyrinomonas(Crowe et al., 2014).


Assuntos
Acidobacteria/classificação , Filogenia , Microbiologia do Solo , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Pradaria , Namíbia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
4.
Int J Syst Evol Microbiol ; 66(8): 2971-2979, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27150379

RESUMO

Members of the phylum Acidobacteria are abundant in a wide variety of soil environments. Despite this, previous cultivation attempts have frequently failed to retrieve representative phylotypes of Acidobacteria, which have, therefore, been discovered by culture-independent methods (13175 acidobacterial sequences in the SILVA database version 123; NR99) and only 47 species have been described so far. Strain Ac_5_C6T represents the first isolate of the globally widespread and abundant subdivision 6 Acidobacteria and is described in the present study. Cells of strain Ac_5_C6T were Gram-stain-negative, immotile rods that divided by binary fission. They formed yellow, extremely cohesive colonies and stable aggregates even in rapidly shaken liquid cultures. Ac_5_C6T was tolerant of a wide range of temperatures (12-40 °C) and pH values (4.7-9.0). It grew chemoorganoheterotrophically on a broad range of substrates including different sugars, organic acids, nucleic acids and complex proteinaceous compounds. The major fatty acids of Ac_5_C6T were iso-C17 : 1 ω9c, C18 : 1 ω7c and iso-C15 : 0. Summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), iso-C17 : 0 and C16 : 0 were also detected. Phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and an unidentified glycolipid were identified as polar lipids. The major quinone was MK-8. The DNA G+C content of Ac_5_C6T was 65.9 mol%. With 16S rRNA gene sequence similarities of 83-84 %, the closest described relatives were Acidicapsa borealis KA1T, Acidobacterium capsulatum 161T, Granulicella pectinovorans TPB6011T, Occallatibacter riparius 277T and Paludibaculum fermentans P105T. According to the morphological, physiological and molecular characteristics, the novel genus Vicinamibacter gen. nov., and the novel species, Vicinamibacter silvestris sp. nov. (type strain Ac_5_C6T = DSM 29464T = LMG 29035T) are proposed.


Assuntos
Acidobacteria/classificação , Pradaria , Filogenia , Microbiologia do Solo , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Namíbia , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Appl Environ Microbiol ; 82(9): 2595-2607, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26896137

RESUMO

Modern sequencing technologies allow high-resolution analyses of total and potentially active soil microbial communities based on their DNA and RNA, respectively. In the present study, quantitative PCR and 454 pyrosequencing were used to evaluate the effects of different extraction methods on the abundance and diversity of 16S rRNA genes and transcripts recovered from three different types of soils (leptosol, stagnosol, and gleysol). The quality and yield of nucleic acids varied considerably with respect to both the applied extraction method and the analyzed type of soil. The bacterial ribosome content (calculated as the ratio of 16S rRNA transcripts to 16S rRNA genes) can serve as an indicator of the potential activity of bacterial cells and differed by 2 orders of magnitude between nucleic acid extracts obtained by the various extraction methods. Depending on the extraction method, the relative abundances of dominant soil taxa, in particular Actino bacteria and Proteobacteria, varied by a factor of up to 10. Through this systematic approach, the present study allows guidelines to be deduced for the selection of the appropriate extraction protocol according to the specific soil properties, the nucleic acid of interest, and the target organisms.


Assuntos
Bactérias/química , Técnicas Bacteriológicas/métodos , Ácidos Nucleicos/isolamento & purificação , Ribossomos/química , Ribossomos/genética , Microbiologia do Solo , Solo/química , Bactérias/genética , Biodiversidade , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , Filogenia , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Análise de Sequência de DNA
6.
Syst Appl Microbiol ; 38(8): 534-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26460220

RESUMO

Despite their high phylogenetic diversity and abundance in soils worldwide, Acidobacteria represent an enigmatic bacterial phylum. Four novel Acidobacteria strains were isolated from Namibian semiarid savannah soils using low-nutrient cultivation media and extended incubation periods. 16S rRNA gene sequence analyses placed the isolates within Acidobacteria subdivision 4. Sequence identities with their closest relatives Aridibacter famidurans and Blastocatella fastidiosa were ≤94.9%. The Gram-negative, non-motile, rod-shaped, aerobic, and chemoorganotrophic bacteria grew at minimum doubling times of 5-14h and formed tiny white to pinkish colonies. Major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, and phosphatidylglycerol. The major isoprenoid quinone was MK-8. The major fatty acid methyl esters comprised iso-C15:0, iso-C15:1H/C13:0 3-OH, and C16:1ω7c/C16:1ω6c. Based on a polyphasic taxonomic characterization, strain Ac_18_E7(T) (=DSM 26557(T)=LMG 28656(T)) represented a novel species and genus, Tellurimicrobium multivorans gen. nov., sp. nov. The other strains constituted three independent species of the novel genus Stenotrophobacter gen. nov., Stenotrophobacter terrae sp. nov. (Ac_28_D10(T)=DSM 26560(T)=LMG 28657(T)), S. roseus sp. nov. (Ac_15_C4(T)=DSM 29891(T)=LMG 28889(T)), and S. namibiensis sp. nov. (Ac_17_F2(T)=DSM 29893(T)=LMG 28890(T)). These isolates doubled the number of established species and permitted the description of higher taxa of Acidobacteria subdivision 4. The family Blastocatellaceae fam. nov. is proposed in order to summarize the currently known oligotrophic, slightly acidophilic to neutrophilic mesophiles from arid soils. The superordinated order Blastocatellales ord. nov. and Blastocatellia classis nov. also include the terrestrial species Pyrinomonas methylaliphatogenes and the anoxygenic photoheterotrophic species Chloracidobacterium thermophilum from microbial mats.


Assuntos
Acidobacteria/classificação , Acidobacteria/isolamento & purificação , Microbiologia do Solo , Acidobacteria/genética , Acidobacteria/fisiologia , Aerobiose , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Clima Desértico , Ácidos Graxos/análise , Dados de Sequência Molecular , Fosfolipídeos/análise , Filogenia , Pigmentos Biológicos/metabolismo , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Int J Syst Evol Microbiol ; 65(10): 3297-3304, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26297491

RESUMO

A novel aerobic, chemo-organoheterotrophic bacterium, strain Ac_26_B10T, was isolated from a semiarid savannah soil collected in northern Namibia (Mashare, Kavango region). Based on analysis of its nearly full-length 16S rRNA gene sequence, the isolate belongs to the genus Terriglobus (family Acidobacteriaceae, order Acidobacteriales, class Acidobacteria) and shares 98.3 and 96.9 % 16S rRNA gene sequence similarity with its closest relatives, Terriglobus tenax DRP 35T and T. aquaticus O3SUJ4T. Cells were Gram-negative, coccoid to rod-shaped, non-motile and divided by binary fission. Strain Ac_26_B10T showed weak catalase activity and, in contrast to the other described species of the genus Terriglobus, was oxidase-positive. Compared with the already established species of the genus Terriglobus, the novel strain used a larger range of sugars and sugar alcohols for growth, lacked α-mannosidase activity and exhibited a higher temperature optimum of growth. DNA­DNA hybridization studies with its closest phylogenetic relative, T. tenax DSM 28898T, confirmed that strain Ac_26_B10T represents a distinct genomospecies. Its most abundant fatty acids were iso-C15 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. Dominant polar lipids were phosphatidylethanolamine and diphosphatidylglycerol. The predominant menaquinone was MK-8; minor amounts of MK-7 and MK-8(H2) were also recorded. The G+C content of the genomic DNA was 58.5 mol%. On the basis of our polyphasic analysis, Ac_26_B10T represents a novel species of the genus Terriglobus, for which the name Terriglobus albidus sp. nov. is proposed. The type strain is Ac_26_B10T ( = DSM 26559T = LMG 27984T).


Assuntos
Acidobacteria/classificação , Pradaria , Filogenia , Microbiologia do Solo , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Namíbia , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
8.
Front Microbiol ; 6: 1567, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26834718

RESUMO

Interrelated successive transformation steps of nitrification are performed by distinct microbial groups - the ammonia-oxidizers, comprising ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizers such as Nitrobacter and Nitrospira, which are the dominant genera in the investigated soils. Hence, not only their presence and activity in the investigated habitat is required for nitrification, but also their temporal and spatial interactions. To demonstrate the interdependence of both groups and to address factors promoting putative niche differentiation within each group, temporal and spatial changes in nitrifying organisms were monitored in an unfertilized grassland site over an entire vegetation period at the plot scale of 10 m(2). Nitrifying organisms were assessed by measuring the abundance of marker genes (amoA for AOA and AOB, nxrA for Nitrobacter, 16S rRNA gene for Nitrospira) selected for the respective sub-processes. A positive correlation between numerically dominant AOA and Nitrospira, and their co-occurrence at the same spatial scale in August and October, suggests that the nitrification process is predominantly performed by these groups and is restricted to a limited timeframe. Amongst nitrite-oxidizers, niche differentiation was evident in observed seasonally varying patterns of co-occurrence and spatial separation. While their distributions were most likely driven by substrate concentrations, oxygen availability may also have played a role under substrate-limited conditions. Phylogenetic analysis revealed temporal shifts in Nitrospira community composition with an increasing relative abundance of OTU03 assigned to sublineage V from August onward, indicating its important role in nitrite oxidation.

9.
Appl Environ Microbiol ; 80(17): 5207-18, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24928878

RESUMO

Recently, iso-diabolic acid (13,16-dimethyl octacosanedioic acid) has been identified as a major membrane-spanning lipid of subdivisions 1 and 3 of the Acidobacteria, a highly diverse phylum within the Bacteria. This finding pointed to the Acidobacteria as a potential source for the bacterial glycerol dialkyl glycerol tetraethers that occur ubiquitously in peat, soil, lakes, and hot springs. Here, we examined the lipid composition of seven phylogenetically divergent strains of subdivision 4 of the Acidobacteria, a bacterial group that is commonly encountered in soil. Acid hydrolysis of total cell material released iso-diabolic acid derivatives in substantial quantities (11 to 48% of all fatty acids). In contrast to subdivisions 1 and 3 of the Acidobacteria, 6 out of the 7 species of subdivision 4 (excepting "Candidatus Chloracidobacterium thermophilum") contained iso-diabolic acid ether bound to a glycerol in larger fractional abundance than iso-diabolic acid itself. This is in agreement with the analysis of intact polar lipids (IPLs) by high-performance liquid chromatography-mass spectrometry (HPLC-MS), which showed the dominance of mixed ether-ester glycerides. iso-Diabolic acid-containing IPLs were not identified, because these IPLs are not released with a Bligh-Dyer extraction, as observed before when studying lipid compositions of subdivisions 1 and 3 of the Acidobacteria. The presence of ether bonds in the membrane lipids does not seem to be an adaptation to temperature, because the five mesophilic isolates contained a larger amount of ether lipids than the thermophile "Ca. Chloracidobacterium thermophilum." Furthermore, experiments with Pyrinomonas methylaliphatogenes did not reveal a major influence of growth temperature over the 50 to 69°C range.


Assuntos
Acidobacteria/química , Ácidos Dicarboxílicos/análise , Lipídeos/análise , Acidobacteria/classificação , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , Microbiologia Ambiental , Ésteres/análise , Éteres/análise , Espectrometria de Massas , Dados de Sequência Molecular , Análise de Sequência de DNA
10.
Int J Syst Evol Microbiol ; 64(Pt 6): 1866-1875, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24573163

RESUMO

Acidobacteria constitute an abundant fraction of the soil microbial community and are currently divided into 26 subdivisions. Most cultivated members of the Acidobacteria are affiliated with subdivision 1, while only a few representatives of subdivisions 3, 4, 8, 10 and 23 have been isolated and described so far. Two novel isolates of subdivision 4 of the Acidobacteria were isolated from subtropical savannah soils and are characterized in the present work. Cells of strains A22_HD_4H(T) and Ac_23_E3(T) were immotile rods that divided by binary fission. Colonies were pink and white, respectively. The novel strains A22_HD_4H(T) and Ac_23_E3(T) were aerobic mesophiles with a broad range of tolerance towards pH (4.0-9.5 and 3.5-10.0, respectively) and temperature (15-44 and 12-47 °C, respectively). Both showed chemo-organoheterotrophic growth on some sugars, the amino sugar N-acetylgalactosamine, a few amino acids, organic acids and various complex protein substrates. Major fatty acids of A22_HD_4H(T) and Ac_23_E3(T) were iso-C(15 : 0), summed feature 1 (C(13 : 0) 3-OH/iso-C(15 : 1) H), summed feature 3 (C(16 : 1)ω7c/C(16 : 1)ω6c) and anteiso-C(17 : 0). The major quinone was MK-8; in addition, MK-7 occurred in small amounts. The DNA G+C contents of A22_HD_4H(T) and Ac_23_E3(T) were 53.2 and 52.6 mol%, respectively. The closest described relative was Blastocatella fastidiosa A2-16(T), with 16S rRNA gene sequence identity of 93.2 and 93.3%, respectively. Strains A22_HD_4H(T) and Ac_23_E3(T) displayed 16S rRNA gene sequence similarity of 97.4% to each other. On the basis of the low DNA-DNA hybridization value, the two isolates represent different species. Based on morphological, physiological and molecular characteristics, the new genus Aridibacter gen. nov. is proposed, with two novel species, the type species Aridibacter famidurans sp. nov. (type strain A22_HD_4H(T) = DSM 26555(T) = LMG 27985(T)) and a second species, Aridibacter kavangonensis sp. nov. (type strain Ac_23_E3(T) = DSM 26558(T) = LMG 27597(T)).


Assuntos
Acidobacteria/classificação , Filogenia , Microbiologia do Solo , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Namíbia , Hibridização de Ácido Nucleico , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
11.
Environ Microbiol ; 16(3): 658-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23802854

RESUMO

16S rRNA genes and transcripts of Acidobacteria were investigated in 57 grassland and forest soils of three different geographic regions. Acidobacteria contributed 9-31% of bacterial 16S rRNA genes whereas the relative abundances of the respective transcripts were 4-16%. The specific cellular 16S rRNA content (determined as molar ratio of rRNA : rRNA genes) ranged between 3 and 80, indicating a low in situ growth rate. Correlations with flagellate numbers, vascular plant diversity and soil respiration suggest that biotic interactions are important determinants of Acidobacteria 16S rRNA transcript abundances in soils. While the phylogenetic composition of Acidobacteria differed significantly between grassland and forest soils, high throughput denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism fingerprinting detected 16S rRNA transcripts of most phylotypes in situ. Partial least squares regression suggested that chemical soil conditions such as pH, total nitrogen, C : N ratio, ammonia concentrations and total phosphorus affect the composition of this active fraction of Acidobacteria. Transcript abundance for individual Acidobacteria phylotypes was found to correlate with particular physicochemical (pH, temperature, nitrogen or phosphorus) and, most notably, biological parameters (respiration rates, abundances of ciliates or amoebae, vascular plant diversity), providing culture-independent evidence for a distinct niche specialization of different Acidobacteria even from the same subdivision.


Assuntos
Acidobacteria/genética , Acidobacteria/metabolismo , Ecossistema , RNA Ribossômico 16S/genética , Microbiologia do Solo , Árvores/microbiologia , Acidobacteria/classificação , Dados de Sequência Molecular , Nitrogênio/análise , Fósforo/análise , Filogenia , Polimorfismo de Fragmento de Restrição , Solo/química
12.
Appl Environ Microbiol ; 78(20): 7398-406, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22885760

RESUMO

In soil, Acidobacteria constitute on average 20% of all bacteria, are highly diverse, and are physiologically active in situ. However, their individual functions and interactions with higher taxa in soil are still unknown. Here, potential effects of land use, soil properties, plant diversity, and soil nanofauna on acidobacterial community composition were studied by cultivation-independent methods in grassland and forest soils from three different regions in Germany. The analysis of 16S rRNA gene clone libraries representing all studied soils revealed that grassland soils were dominated by subgroup Gp6 and forest soils by subgroup Gp1 Acidobacteria. The analysis of a large number of sites (n = 57) by 16S rRNA gene fingerprinting methods (terminal restriction fragment length polymorphism [T-RFLP] and denaturing gradient gel electrophoresis [DGGE]) showed that Acidobacteria diversities differed between grassland and forest soils but also among the three different regions. Edaphic properties, such as pH, organic carbon, total nitrogen, C/N ratio, phosphorus, nitrate, ammonium, soil moisture, soil temperature, and soil respiration, had an impact on community composition as assessed by fingerprinting. However, interrelations with environmental parameters among subgroup terminal restriction fragments (T-RFs) differed significantly, e.g., different Gp1 T-RFs correlated positively or negatively with nitrogen content. Novel significant correlations of Acidobacteria subpopulations (i.e., individual populations within subgroups) with soil nanofauna and vascular plant diversity were revealed only by analysis of clone sequences. Thus, for detecting novel interrelations of environmental parameters with Acidobacteria, individual populations within subgroups have to be considered.


Assuntos
Acidobacteria/classificação , Acidobacteria/isolamento & purificação , Biota , Microbiologia do Solo , Acidobacteria/genética , Carbono/análise , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Alemanha , Concentração de Íons de Hidrogênio , Metagenoma , Dados de Sequência Molecular , Nitrogênio/análise , Fósforo/análise , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química , Temperatura , Árvores
13.
Appl Environ Microbiol ; 77(17): 5842-50, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21784904

RESUMO

The concomitant occurrence of molecular hydrogen (H(2)) and organic acids along the alimentary canal of the earthworm is indicative of ongoing fermentation during gut passage. Fermentative H(2) production is catalyzed by [FeFe]-hydrogenases and group 4 [NiFe]-hydrogenases in obligate anaerobes (e.g., Clostridiales) and facultative aerobes (e.g., Enterobacteriaceae), respectively, functional groups that might respond differently to contrasting redox conditions. Thus, the objectives of this study were to assess the redox potentials of the alimentary canal of Lumbricus terrestris and analyze the hydrogenase transcript diversities of H(2) producers in glucose-supplemented gut content microcosms. Although redox potentials in the core of the alimentary canal were variable on an individual worm basis, average redox potentials were similar. The lowest redox potentials occurred in the foregut and midgut regions, averaging 40 and 110 mV, respectively. Correlation plots between hydrogenase amino acid sequences and 16S rRNA gene sequences indicated that closely related hydrogenases belonged to closely related taxa, whereas distantly related hydrogenases did not necessarily belong to distantly related taxa. Of 178 [FeFe]-hydrogenase gene transcripts, 177 clustered in 12 Clostridiales-affiliated operational taxonomic units, the majority of which were indicative of heretofore unknown hydrogenases. Of 86 group 4 [NiFe]-hydrogenase gene transcripts, 79% and 21% were affiliated with organisms in the Enterobacteriaceae and Aeromonadaceae, respectively. The collective results (i) suggest that fermenters must cope with variable and moderately oxidative redox conditions along the alimentary canal, (ii) demonstrate that heretofore undetected hydrogenases are present in the earthworm gut, and (iii) corroborate previous findings implicating Clostridiaceae and Enterobacteriaceae as active fermentative taxa in earthworm gut content.


Assuntos
Bactérias Anaeróbias/enzimologia , Proteínas de Bactérias/biossíntese , Hidrogenase/biossíntese , Oligoquetos/microbiologia , RNA Mensageiro/biossíntese , Transcrição Gênica , Animais , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , Proteínas de Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Trato Gastrointestinal/química , Trato Gastrointestinal/microbiologia , Hidrogenase/genética , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Mensageiro/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
ISME J ; 5(1): 92-106, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20613788

RESUMO

The earthworm gut provides ideal in situ conditions for ingested heterotrophic soil bacteria capable of anaerobiosis. High amounts of mucus- and plant-derived saccharides such as glucose are abundant in the earthworm alimentary canal, and high concentrations of molecular hydrogen (H(2)) and organic acids in the alimentary canal are indicative of ongoing fermentations. Thus, the central objective of this study was to resolve potential links between fermentations and active fermenters in gut content of the anecic earthworm Lumbricus terrestris by 16S ribosomal RNA (rRNA)-based stable isotope probing, with [(13)C]glucose as a model substrate. Glucose consumption in anoxic gut content microcosms was rapid and yielded soluble organic compounds (acetate, butyrate, formate, lactate, propionate, succinate and ethanol) and gases (carbon dioxide and H(2)), products indicative of diverse fermentations in the alimentary canal. Clostridiaceae and Enterobacteriaceae were users of glucose-derived carbon. On the basis of the detection of 16S rRNA, active phyla in gut contents included Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Tenericutes and Verrucomicrobia, taxa common to soils. On the basis of a 16S rRNA gene similarity cutoff of 87.5%, 82 families were detected, 17 of which were novel family-level groups. These findings (a) show the large diversity of soil taxa that might be active during gut passage, (b) show that Clostridiaceae and Enterobacteriaceae (fermentative subsets of these taxa) are selectively stimulated by glucose and might therefore be capable of consuming mucus- and plant-derived saccharides during gut passage and (c) indicate that ingested obligate anaerobes and facultative aerobes from soil can concomitantly metabolize the same source of carbon.


Assuntos
Bactérias/metabolismo , Enterobacteriaceae/metabolismo , Fermentação , Oligoquetos/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Carbono/metabolismo , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Fermentação/efeitos dos fármacos , Conteúdo Gastrointestinal/química , Conteúdo Gastrointestinal/microbiologia , Trato Gastrointestinal/microbiologia , Glucose/metabolismo , Glucose/farmacologia , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Edulcorantes/farmacologia
15.
Appl Environ Microbiol ; 75(11): 3430-6, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19346358

RESUMO

Previous studies have documented the capacity of European earthworms belonging to the family Lumbricidae to emit the greenhouse gas nitrous oxide (N(2)O), an activity attributed primarily to the activation of ingested soil denitrifiers. To extend the information base to earthworms in the Southern Hemisphere, four species of earthworms in New Zealand were examined for gut-associated denitrification. Lumbricus rubellus and Aporrectodea rosea (introduced species of Lumbricidae) emitted N(2)O, whereas emission of N(2)O by Octolasion cyaneum (an introduced species of Lumbricidae) and emission of N(2)O by Octochaetus multiporus (a native species of Megascolecidae) were variable and negligible, respectively. Exposing earthworms to nitrite or nitrate and acetylene significantly increased the amount of N(2)O emitted, implicating denitrification as the primary source of N(2)O and indicating that earthworms emitted dinitrogen (N(2)) in addition to N(2)O. The alimentary canal displayed a high capacity to produce N(2)O when it was supplemented with nitrite, and alimentary canal contents contained large amounts of carbohydrates and organic acids indicative of fermentation (e.g., succinate, acetate, and formate) that could serve as sources of reductant for denitrification. nosZ encodes a portion of the terminal oxidoreductase used in denitrification. The nosZ sequences detected in the alimentary canals of L. rubellus and O. multiporus were similar to those retrieved from soil and were distantly related to sequences of uncultured soil bacteria and genera common in soils (i.e., Bradyrhizobium, Azospirillum, Rhodopseudomonas, Rhodospirillum, Pseudomonas, Oligotropha, and Sinorhizobium). These findings (i) suggest that the capacity to emit N(2)O and N(2) is a general trait of earthworms and not geographically restricted, (ii) indicate that species belonging to different earthworm families (i.e., Megascolecidae and Lumbricidae) may not have equal capacities to emit N(2)O, and (iii) also corroborate previous findings that link this capacity to denitrification in the alimentary canal.


Assuntos
Trato Gastrointestinal/microbiologia , Nitratos/metabolismo , Óxido Nitroso/metabolismo , Oligoquetos/microbiologia , Acetileno/metabolismo , Animais , Proteínas de Bactérias/genética , Carboidratos/análise , Ácidos Carboxílicos/análise , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Trato Gastrointestinal/química , Dados de Sequência Molecular , Nova Zelândia , Nitritos/metabolismo , Nitrogênio/metabolismo , Filogenia , Análise de Sequência de DNA
16.
Appl Environ Microbiol ; 75(7): 1852-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19201982

RESUMO

The earthworm gut is a unique microzone in aerated soils that has been proposed to selectively stimulate ingested soil microorganisms by its in situ conditions, which include anoxia, high water content, a near-neutral pH, and high concentrations of organic compounds. The central objective of this study was to resolve potential links between in situ conditions and anaerobic microbial activities during the gut passage of Lumbricus terrestris. Both H(2) and N(2)O were emitted by living earthworms, and in situ microsensor analyses revealed both H(2) and N(2)O in the O(2)-free gut center. The highest H(2) concentrations occurred in foregut and midgut regions, whereas the highest N(2)O concentrations occurred in crop/gizzard and hindgut regions. Thus, H(2)-producing fermentations were more localized in the foregut and midgut, whereas denitrification was more localized in the crop/gizzard and hindgut. Moisture content, total carbon, and total nitrogen were highest in the foregut and decreased from the anterior to posterior end of the gut. Nitrite, ammonium, and iron(II) concentrations were highest in the crop/gizzard and decreased from the anterior to posterior end of the alimentary canal. Concentrations of soluble organic compounds were indicative of distinct fermentation processes along the alimentary canal, with maximal concentrations of organic acids (e.g., acetate and butyrate) occurring in the midgut. These findings suggest that earthworms (i) contribute to the terrestrial cycling of carbon and nitrogen via anaerobic microbial activities in the alimentary canal and (ii) constitute a mobile source of reductant (i.e., emitted H(2)) for microbiota in aerated soils.


Assuntos
Sistema Digestório/química , Hidrogênio/análise , Óxido Nitroso/análise , Oligoquetos/química , Animais , Carbono/análise , Ácidos Carboxílicos/análise , Sistema Digestório/microbiologia , Fermentação , Compostos Férricos/análise , Nitratos/metabolismo , Nitritos/análise , Nitrogênio/análise , Oligoquetos/microbiologia , Compostos de Amônio Quaternário/análise
17.
Environ Microbiol ; 11(6): 1395-409, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19222542

RESUMO

Trophic links between fermentation and methanogenesis of soil derived from a methane-emitting, moderately acidic temperate fen (pH 4.5) were investigated. Initial CO(2):CH(4) production ratios in anoxic microcosms indicated that methanogenesis was concomitant to other terminal anaerobic processes. Methane production in anoxic microcosms at in situ pH was stimulated by supplemental H(2)-CO(2), formate or methanol; supplemental acetate did not stimulate methanogenesis. Supplemental H(2)-CO(2), formate or methanol also stimulated the formation of acetate, indicating that the fen harbours moderately acid-tolerant acetogens. Supplemental monosaccharides (glucose, N-acetylglucosamine and xylose) stimulated the production of CO(2), H(2), acetate and other fermentation products when methanogenesis was inhibited with 2-bromoethane sulfonate 20 mM. Glucose stimulated methanogenesis in the absence of BES. Upper soil depths yielded higher anaerobic activities and also higher numbers of cells. Detected archaeal 16S rRNA genes were indicative of H(2)-CO(2)- and formate-consuming methanogens (Methanomicrobiaceae), obligate acetoclastic methanogens (Methanosaetaceae) and crenarchaeotes (groups I.1a, I.1c and I.3). Molecular analyses of partial sequences of 16S rRNA genes revealed the presence of Acidobacteria, Nitrospirales, Clamydiales, Clostridiales, Alpha-, Gamma-, Deltaproteobacteria and Cyanobacteria. These collective results suggest that this moderately acidic fen harbours phylogenetically diverse, moderately acid tolerant fermenters (both facultative aerobes and obligate anaerobes) that are trophically linked to methanogenesis.


Assuntos
Fermentação , Metano/biossíntese , Microbiologia do Solo , Solo/análise , Áreas Alagadas , Archaea/classificação , Bactérias/classificação , Sequência de Bases , Carbono/análise , Dióxido de Carbono/metabolismo , Cadeia Alimentar , Genes de RNAr/genética , Methanomicrobiales/classificação , Methanomicrobiales/genética , Methanomicrobiales/metabolismo , Dados de Sequência Molecular , Monossacarídeos/metabolismo , Nitrogênio/análise , Filogenia
18.
Environ Microbiol Rep ; 1(5): 307-18, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23765883

RESUMO

Methanogens have a very limited substrate range, and their in situ activities are thus linked to 'intermediary ecosystem metabolism', i.e. complex trophic interactions with other microorganisms catalysing essential intermediary processes that ultimately drive methanogenesis. However, information on intermediary ecosystem metabolism and associated biota is fragmented and often conceptualized rather than resolved. The main objective of this review is to evaluate the concept of intermediary ecosystem metabolism in context with recent work aimed at resolving the complex trophic interactions of a methane-emitting peatland.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...