Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1298892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38312509

RESUMO

Extracellular vesicles (EVs) are membrane structures enclosed by a lipid bilayer that are released into the extracellular space by all types of cells. EVs are involved in many physiological processes by transporting biologically active substances. Interest in EVs for diagnostic biomarker research and therapeutic drug delivery applications has increased in recent years. The realization of the full therapeutic potential of EVs is currently hampered by the lack of a suitable technology for the isolation and purification of EVs for downstream pharmaceutical applications. Anion Exchange Chromatography (AEX) is an established method in which specific charges on the AEX matrix can exploit charges on the surface of EVs and their interactions to provide a productive and scalable separation and purification method. The established AEX method using Eshmuno® Q, a strong tentacle anion exchange resin, was used to demonstrate the principal feasibility of AEX-based isolation and gain insight into isolated EV properties. Using several EV analysis techniques to provide a more detailed insight into EV populations during AEX isolation, we demonstrated that although the composition of CD9/63/81 remained constant for tetraspanin positive EVs, the size distribution and purity changed during elution. Higher salt concentrations eluted larger tetraspanin negative vesicles.

2.
Elife ; 82019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31107240

RESUMO

Oncogenic human papillomaviruses (HPV) are small DNA viruses that infect keratinocytes. After HPV binding to cell surface receptors, a cascade of molecular interactions mediates the infectious cellular internalization of virus particles. Aside from the virus itself, important molecular players involved in virus entry include the tetraspanin CD151 and the epidermal growth factor receptor (EGFR). To date, it is unknown how these components are coordinated in space and time. Here, we studied plasma membrane dynamics of CD151 and EGFR and the HPV16 capsid during the early phase of infection. We find that the proteinase ADAM17 activates the extracellular signal-regulated kinases (ERK1/2) pathway by the shedding of growth factors which triggers the formation of an endocytic entry platform. Infectious endocytic entry platforms carrying virus particles consist of two-fold larger CD151 domains containing the EGFR. Our finding clearly dissects initial virus binding from ADAM17-dependent assembly of a HPV/CD151/EGFR entry platform.


Assuntos
Proteína ADAM17/genética , Infecções por Papillomavirus/genética , Tetraspanina 24/genética , Carcinogênese/genética , Membrana Celular/virologia , Endocitose/genética , Receptores ErbB/genética , Células HeLa , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/patogenicidade , Humanos , Queratinócitos/metabolismo , Queratinócitos/virologia , Sistema de Sinalização das MAP Quinases/genética , Papillomaviridae/genética , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Vírion/genética , Vírion/patogenicidade , Internalização do Vírus
3.
Oncogene ; 37(48): 6275-6284, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30018400

RESUMO

The skin represents a physical and chemical barrier against invading pathogens, which is additionally supported by restriction factors that provide intrinsic cellular immunity. These factors detect viruses to block their replication cycle. Here, we uncover the Myb-related transcription factor, partner of profilin (MYPOP) as a novel antiviral protein. It is highly expressed in the epithelium and binds to the minor capsid protein L2 and the DNA of human papillomaviruses (HPV), which are the primary causative agents of cervical cancer and other tumors. The early promoter activity and early gene expression of the oncogenic HPV types 16 and 18 is potently silenced by MYPOP. Cellular MYPOP-depletion relieves the restriction of HPV16 infection, demonstrating that MYPOP acts as a restriction factor. Interestingly, we found that MYPOP protein levels are significantly reduced in diverse HPV-transformed cell lines and in HPV-induced cervical cancer. Decades ago it became clear that the early oncoproteins E6 and E7 cooperate to immortalize keratinocytes by promoting degradation of tumor suppressor proteins. Our findings suggest that E7 stimulates MYPOP degradation. Moreover, overexpression of MYPOP blocks colony formation of HPV and non-virally transformed keratinocytes, suggesting that MYPOP exhibits tumor suppressor properties.


Assuntos
Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Fator Intrínseco/genética , Proteínas Oncogênicas Virais/genética , Proteínas Proto-Oncogênicas c-myb/genética , Fatores de Transcrição/genética , Proteínas do Capsídeo/genética , Linhagem Celular Tumoral , DNA Viral/genética , Feminino , Interações Hospedeiro-Patógeno/genética , Humanos , Queratinócitos/virologia , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/virologia , Regiões Promotoras Genéticas/genética , Neoplasias do Colo do Útero/virologia
4.
J Virol ; 90(23): 10629-10641, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27654294

RESUMO

The human papillomavirus (HPV) capsid protein L2 is essential for viral entry. To gain a deeper understanding of the role of L2, we searched for novel cellular L2-interacting proteins. A yeast two-hybrid analysis uncovered the actin-depolymerizing factor gelsolin, the membrane glycoprotein dysadherin, the centrosomal protein 68 (Cep68), and the cytoskeletal adaptor protein obscurin-like 1 protein (OBSL1) as putative L2 binding molecules. Pseudovirus (PsV) infection assays identified OBSL1 as a host factor required for gene transduction by three oncogenic human papillomavirus types, HPV16, HPV18, and HPV31. In addition, we detected OBSL1 expression in cervical tissue sections and noted the involvement of OBSL1 during gene transduction of primary keratinocytes by HPV16 PsV. Complex formation of HPV16 L2 with OBSL1 was demonstrated in coimmunofluorescence and coimmunoprecipitation studies after overexpression of L2 or after PsV exposure. We observed a strong colocalization of OBSL1 with HPV16 PsV and tetraspanin CD151 at the plasma membrane, suggesting a role for OBSL1 in viral endocytosis. Indeed, viral entry assays exhibited a reduction of viral endocytosis in OBSL1-depleted cells. Our results suggest OBSL1 as a novel L2-interacting protein and endocytosis factor in HPV infection. IMPORTANCE: Human papillomaviruses infect mucosal and cutaneous epithelia, and the high-risk HPV types account for 5% of cancer cases worldwide. As recently discovered, HPV entry occurs by a clathrin-, caveolin-, and dynamin-independent endocytosis via tetraspanin-enriched microdomains. At present, the cellular proteins involved in the underlying mechanism of this type of endocytosis are under investigation. In this study, the cytoskeletal adaptor OBSL1 was discovered as a previously unrecognized interaction partner of the minor capsid protein L2 and was identified as a proviral host factor required for HPV16 endocytosis into target cells. The findings of this study advance the understanding of a so far less well-characterized endocytic pathway that is used by oncogenic HPV subtypes.


Assuntos
Proteínas do Capsídeo/fisiologia , Proteínas do Citoesqueleto/fisiologia , Papillomavirus Humano 16/fisiologia , Proteínas Oncogênicas Virais/fisiologia , Proteínas do Capsídeo/genética , Linhagem Celular , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Endocitose/fisiologia , Técnicas de Silenciamento de Genes , Células HeLa , Interações Hospedeiro-Patógeno/fisiologia , Papillomavirus Humano 16/genética , Humanos , Queratinócitos/fisiologia , Queratinócitos/virologia , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/etiologia , Técnicas do Sistema de Duplo-Híbrido , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA