Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.723
Filtrar
1.
Neural Regen Res ; 20(1): 93-106, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767479

RESUMO

Nowadays, presynaptic dopaminergic positron emission tomography, which assesses deficiencies in dopamine synthesis, storage, and transport, is widely utilized for early diagnosis and differential diagnosis of parkinsonism. This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism. We conducted a thorough literature search using reputable databases such as PubMed and Web of Science. Selection criteria involved identifying peer-reviewed articles published within the last 5 years, with emphasis on their relevance to clinical applications. The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis. Moreover, when employed in conjunction with other imaging modalities and advanced analytical methods, presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker. This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion. In summary, the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials, ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.

2.
Nat Commun ; 15(1): 6975, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143113

RESUMO

Receptor-interacting protein kinase 1 (RIPK1) is a therapeutic target in treating neurodegenerative diseases and cancers. RIPK1 has three distinct functional domains, with the center domain containing a receptor-interacting protein homotypic interaction motif (RHIM), which mediates amyloid formation. The functional amyloid formed by RIPK1 and/or RIPK3 is a crucial intermediate in regulating cell necroptosis. In this study, the amyloid structure of mouse RIPK1, formed by an 82-residue sequence centered at RHIM, is presented. It reveals the "N"-shaped folding of the protein subunit in the fibril with four ß-strands. The folding pattern is shared by several amyloid structures formed by proteins with RHIM, with the central ß-strand formed by the most conserved tetrad sequence I/VQI/VG. However, the solid-state NMR results indicate a structural difference between mouse RIPK1 and mouse RIPK3. A change in the structural rigidity is also suggested by the observation of weakened signals for mouse RIPK3 upon mixing with RIPK1 to form the RIPK1/RIPK3 complex fibrils. Our results provide vital information to understand the interactions between different proteins with RHIM, which will help us further comprehend the regulation mechanism in cell necroptosis.


Assuntos
Amiloide , Proteína Serina-Treonina Quinases de Interação com Receptores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Animais , Camundongos , Amiloide/metabolismo , Amiloide/química , Humanos , Necroptose , Sequência de Aminoácidos , Domínios Proteicos , Ligação Proteica , Modelos Moleculares
3.
Nat Commun ; 15(1): 6906, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134551

RESUMO

The yield of pearl millet, a resilient cereal crop crucial for African food security, is severely impacted by the root parasitic weed Striga hermonthica, which requires host-released hormones, called strigolactones (SLs), for seed germination. Herein, we identify four SLs present in the Striga-susceptible line SOSAT-C88-P10 (P10) but absent in the resistant 29Aw (Aw). We generate chromosome-scale genome assemblies, including four gapless chromosomes for each line. The Striga-resistant Aw lacks a 0.7 Mb genome segment containing two putative CARLACTONOIC ACID METHYLTRANSFERASE1 (CLAMT1) genes, which may contribute to SL biosynthesis. Functional assays show that P10CLAMT1b produces the SL-biosynthesis intermediate methyl carlactonoate (MeCLA) and that MeCLA is the precursor of P10-specific SLs. Screening a diverse pearl millet panel confirms the pivotal role of the CLAMT1 section for SL diversity and Striga susceptibility. Our results reveal a reason for Striga susceptibility in pearl millet and pave the way for generating resistant lines through marker-assisted breeding or direct genetic modification.


Assuntos
Genoma de Planta , Lactonas , Pennisetum , Striga , Striga/genética , Lactonas/metabolismo , Pennisetum/genética , Pennisetum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cromossomos de Plantas/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Plantas Daninhas/genética , Plantas Daninhas/metabolismo , Resistência à Doença/genética , Reguladores de Crescimento de Plantas/metabolismo
4.
Nature ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143224

RESUMO

T-lineage acute lymphoblastic leukaemia (T-ALL) is a high-risk tumour1 that has eluded comprehensive genomic characterization, which is partly due to the high frequency of noncoding genomic alterations that result in oncogene deregulation2,3. Here we report an integrated analysis of genome and transcriptome sequencing of tumour and remission samples from more than 1,300 uniformly treated children with T-ALL, coupled with epigenomic and single-cell analyses of malignant and normal T cell precursors. This approach identified 15 subtypes with distinct genomic drivers, gene expression patterns, developmental states and outcomes. Analyses of chromatin topology revealed multiple mechanisms of enhancer deregulation that involve enhancers and genes in a subtype-specific manner, thereby demonstrating widespread involvement of the noncoding genome. We show that the immunophenotypically described, high-risk entity of early T cell precursor ALL is superseded by a broader category of 'early T cell precursor-like' leukaemia. This category has a variable immunophenotype and diverse genomic alterations of a core set of genes that encode regulators of hematopoietic stem cell development. Using multivariable outcome models, we show that genetic subtypes, driver and concomitant genetic alterations independently predict treatment failure and survival. These findings provide a roadmap for the classification, risk stratification and mechanistic understanding of this disease.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39185644

RESUMO

INTRODUCTION: Nicotinamide Mononucleotide (NMN) has gained attention as a precursor to Nicotinamide Adenine Dinucleotide (NAD+) in recent years, commonly utilized in anti-aging therapies. The anti-aging effects of NMN on muscle and liver functions in middleaged and elderly people are still unclear. OBJECTIVE: Based on available randomized controlled trials, we conducted a meta-analysis to evaluate the impact of NMN on muscle and liver functions in middle-aged and elderly individuals. METHODS: We conducted searches on three electronic databases (PubMed, Embase, Web of Science) for randomized controlled trials involving NMN interventions in middle-aged and elderly populations. Through the Cochrane Handbook, we assessed the specific methodological quality. All statistical analyses were obtained by Stata15, and statistical significance was set as P<0.05. RESULTS: There were 412 participants from 9 studies in this meta-analysis. Based on changes in gait speed (SMD: 0.34 m/s, 95%CI [0.03, 0.66] p = 0.033), NMN had significant effects on muscle mass. Moreover, NMN had a better effect on ALT (SMD: -0.29 IU/L, 95%CI [-0.55, -0.03] p = 0.028). Subgroup analysis indicated that administering a small dose of NMN exerted the most prominent impact on Homeostasis Model Assessment-Insulin Resistance (HOMA-IR). CONCLUSION: NMN has positive efficacy in enhancing muscle function, reducing insulin resistance and lowering aminotransferase levels in middle-aged and elderly individuals. NMN is an encouraging and considerable drug for anti-aging treatment.

6.
Eur J Pharmacol ; 980: 176828, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39094924

RESUMO

Induction of resistin-like molecule ß (Relm-ß) and mitofusin 2 (MFN2) mediated aberrant mitochondrial fission have been found to be involved in the pathogenesis of pulmonary arterial hypertension (PAH). However, the molecular mechanisms underlying Relm-ß regulation of MFN2 therefore mitochondrial fission remain unclear. This study aims to address these issues. Primary cultured PASMCs and monocrotaline (MCT)-induced PAH rats were applied in this study. The results showed that Relm-ß promoted cells proliferation in PASMCs, this was accompanied with the upregulation of USP18, Twist1 and miR-214, and downregulation of MFN2. We found that Relm-ß increased USP18 expression which in turn raised Twist1 by suppressing its proteasome degradation. Elevation of Twist1 increased miR-214 expression and then reduced MFN2 expression and mitochondrial fragmentation leading to PASMCs proliferation. In vivo study, we confirmed that Relm-ß was elevated in MCT-induced PAH rat model, and USP18/Twist1/miR-214/MFN2 axis was altered similar as in vitro. Targeting this cascade by Relm-ß receptor inhibitor Calhex231, proteasome inhibitor MG-132, Twist1 inhibitor Harmine or miR-214 antagomiR prevented the development of pulmonary vascular remodeling and therefore PAH in MCT-treated rats. In conclusion, we demonstrate that Relm-ß promotes PASMCs proliferation and vascular remodeling by activating USP18/Twist1/miR-214 dependent MFN2 reduction and mitochondrial fission, suggesting that this signaling pathway might be a promising target for management of PAH.


Assuntos
Proliferação de Células , GTP Fosfo-Hidrolases , MicroRNAs , Mitocôndrias , Ratos Sprague-Dawley , Transdução de Sinais , Proteína 1 Relacionada a Twist , Ubiquitina Tiolesterase , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Masculino , Ratos , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Proteína 1 Relacionada a Twist/metabolismo , Proteína 1 Relacionada a Twist/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/fisiopatologia , Monocrotalina/toxicidade , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Proteínas Mitocondriais
7.
Brain Commun ; 6(4): fcae263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171204

RESUMO

Evidence indicates that the default mode network (DMN) plays a crucial role in the neuropathology of major depressive disorder (MDD). However, the neural signatures of DMN subsystems in MDD after low resistance Thought Induction Psychotherapy (TIP) remain incompletely understood. We collected functional magnetic resonance imaging data from 20 first-episode, drug-naive MDD and 20 healthy controls (HCs). The DMN was segmented into three subsystems and seed-based functional connectivity (FC) was computed. After 6-week treatment, the significantly reduced FCs with the medial temporal lobe memory subsystem in MDD at baseline were enhanced and were comparable to that in HCs. Changed Hamilton Depression Rating Scale scores were significantly related with changed FC between the posterior cingulate cortex (PCC) and the right precuneus (PCUN). Further, changed serotonin 5-hydroxytryptamine levels were significantly correlated with changed FCs between the PCC and the left PCUN, between the posterior inferior parietal lobule and the left inferior temporal gyrus, and between the retrosplenial cortex and the right inferior frontal gyrus, opercular part. Finally, the support vector machine obtained an accuracy of 67.5% to distinguish between MDD at baseline and HCs. These findings may deepen our understanding of the neural basis of the effects of TIP on DMN subsystems in MDD.

9.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39166914

RESUMO

The time-to-digital converter (TDC) implemented in a field-programmable-gate-array has garnered widespread attention due to its flexibility and high-performance capabilities. However, issues such as non-uniformity, the bubble in the tapped delay line, and the presence of certain ultra-wide delay units can significantly compromise the precision and nonlinearity of the TDC. In this paper, we propose a high-precision TDC in an Elitestek Ti60 FPGA, effectively eliminating the adverse effects of non-uniformity, the bubble, and certain ultra-wide delay units. The TDC is constructed with a 318-stage delay chain and operates at a low system clock frequency of 150 MHz. The least significant bit (LSB) of the TDC is 21.92 ps. The differential nonlinearity (DNL) is between (-0.976, 1.615) LSB and the integral nonlinearity (INL) is between (-1.446, 2.678) LSB. The TDC achieves a root-mean-square error of 14.783 ps when utilized for measuring various time intervals.

10.
Chin J Integr Med ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167283

RESUMO

OBJECTIVE: To investigate potential mechanisms of anti-atherosclerosis by berberine (BBR) using ApoE-/- mice. METHODS: Eight 8-week-old C57BL/6J mice were used as a blank control group (normal), and 56 8-week-old AopE-/- mice were fed a high-fat diet for 12 weeks, according to a completely random method, and were divided into the model group, BBR low-dose group (50 mg/kg, BBRL), BBR medium-dose group (100 mg/kg, BBRM), BBR high-dose group (150 mg/kg, BBRH), BBR+nuclear factor erythroid 2-related factor 2 (NRF2) inhibitor group (100 mg/kg BBR+30 mg/kg ML385, BBRM+ML385), NRF2 inhibitor group (30 mg/kg, ML385), and positive control group (2.5 mg/kg, atorvastatin), 8 in each group. After 4 weeks of intragastric administration, samples were collected and serum, aorta, heart and liver tissues were isolated. Biochemical kits were used to detect serum lipid content and the expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in all experimental groups. The pathological changes of atherosclerosis (AS) were observed by aorta gross Oil Red O, aortic sinus hematoxylin-eosin (HE) and Masson staining. Liver lipopathy was observed in mice by HE staining. The morphology of mitochondria in aorta cells was observed under transmission electron microscope. Flow cytometry was used to detect reactive oxygen species (ROS) expression in aorta of mice in each group. The content of ferrous ion Fe2+ in serum of mice was detected by biochemical kit. The mRNA and protein relative expression levels of NRF2, glutathione peroxidase 4 (GPX4) and recombinant solute carrier family 7 member 11 (SLC7A11) were detected by quantitative real time polymerase chain reaction (RT-qPCR) and Western blot, respectively. RESULTS: BBRM and BBRH groups delayed the progression of AS and reduced the plaque area (P<0.01). The characteristic morphological changes of ferroptosis were rarely observed in BBR-treated AS mice, and the content of Fe2+ in BBR group was significantly lower than that in the model group (P<0.01). BBR decreased ROS and MDA levels in mouse aorta, increased SOD activity (P<0.01), significantly up-regulated NRF2/SLC7A11/GPX4 protein and mRNA expression levels (P<0.01), and inhibited lipid peroxidation. Compared with the model group, the body weight, blood lipid level and aortic plaque area of ML385 group increased (P<0.01); the morphology of mitochondria showed significant ferroptosis characteristics; the serum Fe2+, MDA and ROS levels increased (P<0.05 or P<0.01), and the activity of SOD decreased (P<0.01). Compared with BBRM group, the iron inhibition effect of BBRM+ML385 group was significantly weakened, and the plaque area significantly increased (P<0.01). CONCLUSION: Through NRF2/SLC7A11/GPX4 pathway, BBR can resist oxidative stress, inhibit ferroptosis, reduce plaque area, stabilize plaque, and exert anti-AS effects.

11.
Transplantation ; 108(9): 1922-1930, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39167562

RESUMO

BACKGROUND: Ex vivo heart perfusion (EVHP) of donation after circulatory death (DCD) hearts has become an effective strategy in adults; however, the small circulating volume in pediatrics poses the challenge of a low-hemoglobin (Hb) perfusate. We aimed to determine the impact of perfusate Hb levels during EVHP on DCD hearts using a juvenile porcine model. METHODS: Sixteen DCD piglet hearts (11-14 kg) were reperfused for 4 h in unloaded mode followed by working mode. Metabolism, cardiac function, and cell damage were compared between the low-Hb (Hb, 5.0-5.9 g/dL; n = 8) and control (Hb, 7.5-8.4 g/dL; n = 8) groups. Between-group differences were evaluated using 2-sample t -tests or Fisher's Exact tests. RESULTS: During unloaded mode, the low-Hb group showed lower myocardial oxygen consumption ( P < 0.001), a higher arterial lactate level ( P = 0.001), and worse systolic ventricular function ( P < 0.001). During working mode, the low-Hb group had a lower cardiac output (mean, 71% versus 106% of normal cardiac output, P = 0.010) and a higher arterial lactate level ( P = 0.031). Adjusted cardiac troponin-I ( P = 0.112) did not differ between the groups. Morphological myocyte injury in the left ventricle was more severe in the low-Hb group ( P = 0.028). CONCLUSIONS: Low-Hb perfusate with inadequate oxygen delivery induced anaerobic metabolism, resulting in suboptimal DCD heart recovery and declined cardiac function. Arranging an optimal perfusate is crucial to organ protection, and further endeavors to refine the priming volume of EVHP or the transfusion strategy are required.


Assuntos
Transplante de Coração , Hemoglobinas , Perfusão , Animais , Hemoglobinas/metabolismo , Hemoglobinas/análise , Perfusão/métodos , Suínos , Consumo de Oxigênio , Miocárdio/metabolismo , Miocárdio/patologia , Modelos Animais , Sus scrofa , Preservação de Órgãos/métodos
12.
Anal Chem ; 96(33): 13710-13718, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39115804

RESUMO

Homogeneous electrochemiluminescence (ECL) has gained attention for its simplicity and stability. However, false positives due to solution background interference pose a challenge. To address this, magnetic ECL nanoparticles (Fe3O4@Ru@SiO2 NPs) were synthesized, offering easy modification, magnetic separation, and stable luminescence. These were utilized in an ECL sensor for miRNA-155 (miR-155) detection, with locked DNAzyme and substrate chain (mDNA) modified on their surface. The poor conductivity of long-chain DNA significantly impacts the conductivity and electron transfer capability of Fe3O4@Ru@SiO2 NPs, resulting in weaker ECL signals. Upon target presence, unlocked DNAzyme catalyzes mDNA cleavage, leading to shortened DNA chains and reduced density. In contrast, the presence of short-chain DNA has minimal impact on the conductivity and electron transfer capability of Fe3O4@Ru@SiO2 NPs. Simultaneously, the material surface's electronegativity decreases, weakening the electrostatic repulsion with the negatively charged electrode, resulting in the system detecting stronger ECL signals. This sensor enables homogeneous ECL detection while mitigating solution background interference through magnetic separation. Within a range of 100 fM to 10 nM, the sensor exhibits a linear relationship between ECL intensity and target concentration, with a 26.91 fM detection limit. It demonstrates high accuracy in clinical sample detection, holding significant potential for clinical diagnostics. Future integration with innovative detection strategies may further enhance sensitivity and specificity in biosensing applications.


Assuntos
DNA , Técnicas Eletroquímicas , Medições Luminescentes , MicroRNAs , Dióxido de Silício , MicroRNAs/análise , Técnicas Eletroquímicas/métodos , DNA/química , Dióxido de Silício/química , Humanos , Técnicas Biossensoriais/métodos , Propriedades de Superfície , DNA Catalítico/química , DNA Catalítico/metabolismo , Nanopartículas de Magnetita/química , Limite de Detecção , Rutênio/química
13.
BMC Pregnancy Childbirth ; 24(1): 543, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148025

RESUMO

BACKGROUND: Preeclampsia is a severe obstetric disorder that significantly affects the maternal and neonatal peri-partum safety and long-term quality of life. However, there is limited research exploring the common mechanisms and potential clinical significance between early-onset preeclampsia and full-term preeclampsia from an immunological perspective. METHODS: In this study, data analysis was conducted. Initially, immune-related co-expressed genes involving both subtypes of preeclampsia were identified through Weighted Gene Co-expression Network Analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were further employed to investigate the shared pathways regulated by immune-related genes. Binary logistic regression identified co-expressed genes with diagnostic value for preeclampsia, and a diagnostic model was constructed. Gene Set Enrichment Analysis (GSEA) predicted the potential biological functions of the selected genes. Lasso and Cox regression analyses identified genes closely associated with gestational duration, and a risk score model was established. A 4-gene feature, immune-related gene model for predicting the risk of preterm birth in preeclamptic pregnant women, was developed and validated through qPCR experiments. Immune cell infiltration analysis determined differences in immune cell infiltration between the two subtypes of preeclampsia. RESULTS: This study identified 4 immune-related co-expressed genes (CXCR6, PIK3CB, IL1RAP, and OSMR). Additionally, diagnostic and preterm birth risk prediction models for preeclampsia were constructed based on these genes. GSEA analysis suggested the involvement of these genes in the regulation of galactose metabolism, notch signaling pathway, and RIG-I like receptor signaling pathway. Immune pathway analysis indicated that the activation of T cell co-inhibition could be a potential intervention target for immunotherapy in early-onset preeclampsia. CONCLUSION: Our study provides promising insights into immunotherapy and mechanistic research for preeclampsia, discovering novel diagnostic and intervention biomarkers, and offering personalized diagnostic tools for preeclampsia.


Assuntos
Pré-Eclâmpsia , Nascimento Prematuro , Adulto , Feminino , Humanos , Gravidez , Relevância Clínica , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/imunologia , Nascimento Prematuro/genética , Nascimento Prematuro/imunologia
14.
Indian J Thorac Cardiovasc Surg ; 40(5): 617-620, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39156065

RESUMO

There is no definitive approach for assessing mesenteric ischemia and determining the optimal timing for endovascular intervention in the management of spontaneous isolated dissection of the superior mesenteric artery (SISMAD). A 56-year-old male with acute abdominal pain was diagnosed with SISMAD. After evaluating mesenteric ischemia through mesenteric fractional flow reserve (FFR), FFR was 0.72, and the patient was recommended conservative treatment for SISMAD, which involves fasting, total parenteral nutrition, and anticoagulation. The patient's syndrome was relieved after conservative treatment for 14 days without stent implantation. Over the next 5 years, no recurrence of abdominal pain or worsening of SISMAD was observed in the patient. Assessing the severity of mesenteric ischemia can be done through mesenteric FFR. Upon confirmation of the exclusion of risks related to dilatation or rupture of SISMAD aneurysm, an approach in favor of conservative management for SISMAD may indeed be considered pragmatic when the FFR exceeds 0.72.

15.
Int J Ophthalmol ; 17(8): 1387-1395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156784

RESUMO

AIM: To investigate the impact of hsa_circ_0007482 on the proliferation and apoptosis of human pterygium fibroblasts (HPFs) and its correlation with the severity grades of pterygium. METHODS: Pterygium and normal conjunctival tissues were collected from the superior area of the same patient's eye (n=33). The correlation between pterygium severity and hsa_circ_0007482 expression using quantitative reverse-transcription polymerase chain reaction (RT-qPCR) were analyzed. Three distinct siRNA sequences targeting hsa_circ_0007482, along with a negative control sequence, were transfected into HPFs. Cell proliferation was assessed using the cell counting kit-8. Expression levels of Ki67, proliferating cell nuclear antigen (PCNA), Cyclin D1, Bax, B-cell lymphoma-2 (Bcl-2), and Caspase-3 were measured via RT-qPCR. Immunofluorescence staining was employed to detect Ki67 and vimentin expressions. Apoptosis was evaluated using flow cytometry. RESULTS: Hsa_circ_0007482 expression was significantly higher in pterygium tissues compared to normal conjunctival tissues (P<0.001). Positive correlations were observed between hsa_circ_0007482 expression and pterygium severity, thickness, and vascular density. Knockdown of hsa_circ_0007482 inhibited cell proliferation, reducing the mRNA expression of Ki67, PCNA, and Cyclin D1 in HPFs. Hsa_circ_0007482 knockdown induced apoptosis, increasing mRNA expression levels of Bax and Caspase-3, while decreasing Bcl-2 expression in HPFs. Additionally, hsa_circ_0007482 knockdown attenuated vimentin expression in HPFs. CONCLUSION: The downregulation of hsa_circ_0007482 effectively hampers cell proliferation and triggers apoptosis in HPFs. There are discernible positive correlations detected between the expression of hsa_circ_0007482 and the severity of pterygium.

16.
Front Cell Neurosci ; 18: 1421342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39157757

RESUMO

Introduction: Mesenchymal stem cells (MSCs) have long been postulated as an important source cell in regenerative medicine. During subculture expansion, mesenchymal stem cell (MSC) senescence diminishes their multi-differentiation capabilities, leading to a loss of therapeutic potential. Up to date, the extrachromosomal circular DNAs (eccDNAs) have been demonstrated to be involved in senescence but the roles of eccDNAs during MSC. Methods: Here we explored eccDNA profiles in human bone marrow MSCs (BM-MSCs). EccDNA and mRNA was purified and sequenced, followed by quantification and functional annotation. Moreover, we mapped our datasets with the downloading enhancer and transcription factor-regulated genes to explore the potential role of eccDNAs. Results: Sequentially, gene annotation analysis revealed that the majority of eccDNA were mapped in the intron regions with limited BM-MSC enhancer overlaps. We discovered that these eccDNA motifs in senescent BMSCs acted as motifs for binding transcription factors (TFs) of senescence-related genes. Discussion: These findings are highly significant for identifying biomarkers of senescence and therapeutic targets in mesenchymal stem cells (MSCs) for future clinical applications. The potential of eccDNA as a stable therapeutic target for senescence-related disorders warrants further investigation, particularly exploring chemically synthesized eccDNAs as transcription factor regulatory elements to reverse cellular senescence.

17.
Cardiovasc Diabetol ; 23(1): 300, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152477

RESUMO

BACKGROUND: Diabetes mellitus (DM) and coronary microvascular dysfunction (CMD) increase the risk of adverse cardiac events in patients with non-ST-segment elevation myocardial infarction (NSTEMI). This study aimed to evaluate the combined risk estimates of DM and CMD, assessed by the angiography-derived index of microcirculatory resistance (angio-IMR), in patients with NSTEMI. METHODS: A total of 2212 patients with NSTEMI who underwent successful percutaneous coronary intervention (PCI) were retrospectively enrolled from three centers. The primary outcome was a composite of cardiac death or readmission for heart failure at a 2-year follow-up. RESULTS: Post-PCI angio-IMR did not significantly differ between the DM group and the non-DM group (20.13 [17.91-22.70] vs. 20.19 [18.14-22.77], P = 0.530). DM patients exhibited a notably higher risk of cardiac death or readmission for heart failure at 2 years compared to non-DM patients (9.5% vs. 5.4%, P < 0.001). NSTEMI patients with both DM and CMD experienced the highest cumulative incidence of cardiac death or readmission for heart failure at 2 years (24.0%, P < 0.001). The combination of DM and CMD in NSTEMI patients were identified as the most powerful independent predictor for cardiac death or readmission for heart failure at 2 years (adjusted HR: 7.894, [95% CI, 4.251-14.659], p < 0.001). CONCLUSIONS: In patients with NSTEMI, the combination of DM and CMD is an independent predictor of cardiac death or readmission for heart failure. Angio-IMR could be used as an additional evaluation tool for the management of NSTEMI patients with DM. TRIAL REGISTRATION: URL: https://www. CLINICALTRIALS: gov ; Unique identifier: NCT05696379.


Assuntos
Angiografia Coronária , Circulação Coronária , Diabetes Mellitus , Microcirculação , Infarto do Miocárdio sem Supradesnível do Segmento ST , Readmissão do Paciente , Intervenção Coronária Percutânea , Valor Preditivo dos Testes , Resistência Vascular , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Infarto do Miocárdio sem Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio sem Supradesnível do Segmento ST/mortalidade , Infarto do Miocárdio sem Supradesnível do Segmento ST/terapia , Infarto do Miocárdio sem Supradesnível do Segmento ST/fisiopatologia , Idoso , Medição de Risco , Estudos Retrospectivos , Intervenção Coronária Percutânea/efeitos adversos , Fatores de Risco , Fatores de Tempo , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/diagnóstico , Resultado do Tratamento , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/epidemiologia , China/epidemiologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-39141574

RESUMO

Bone and tooth defects can considerably affect the quality of life and health of patients, and orthopedic implants remain the primary method of addressing such defects. However, implant materials cannot coordinate with the immune microenvironment because of their biological inertness, which may lead to implant loosening or failure. Motivated by the microstructure of nacre, we engineered a biomimetic micro/nanoscale topography on a tantalum surface using a straightforward method. This comprised an organized array of tantalum nanotubes arranged in a brick wall structure, with epigallocatechin gallate acting as "mortar." The coating improved the corrosion resistance, biocompatibility, and antioxidant properties. In vitro and in vivo evaluations further confirmed that coatings can create a favorable bone immune microenvironment through the synergistic effects of mechanochemistry and enhance bone integration. This research offers a new viewpoint on the creation of sophisticated functional implants, possessing vast potential for use in the regeneration and repair of bone tissue.

20.
ACS Synth Biol ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145487

RESUMO

Flavonoids, a significant group of natural polyphenolic compounds, possess a broad spectrum of pharmacological effects. Recent advances in the systematic metabolic engineering of yeast cell factories (YCFs) provide new opportunities for enhanced flavonoid production. Herein, we outline the latest research progress on typical flavonoid products in YCFs. Advanced engineering strategies involved in flavonoid biosynthesis are discussed in detail, including enhancing precursor supply, cofactor engineering, optimizing core pathways, eliminating competitive pathways, relieving transport limitations, and dynamic regulation. Additionally, we highlight the existing problems in the biosynthesis of flavonoid glucosides in yeast, such as endogenous degradation of flavonoid glycosides, substrate promiscuity of UDP-glycosyltransferases, and an insufficient supply of UDP-sugars, with summaries on the corresponding solutions. Discussions also cover other typical postmodifications like prenylation and methylation, and the recent biosynthesis of complex flavonoid compounds in yeast. Finally, a series of advanced technologies are envisioned, i.e., semirational enzyme engineering, ML/DL algorithn, and systems biology, with the aspiration of achieving large-scale industrial production of flavonoid compounds in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA