Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(22): eadg7940, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37267355

RESUMO

Apotosis is an essential process tightly regulated by the Bcl-2 protein family where proapoptotic Bax triggers cell death by perforating the mitochondrial outer membrane. Although intensively studied, the molecular mechanism by which these proteins create apoptotic pores remains elusive. Here, we show that Bax creates pores by extracting lipids from outer mitochondrial membrane mimics by formation of Bax/lipid clusters that are deposited on the membrane surface. Time-resolved neutron reflectometry and Fourier transform infrared spectroscopy revealed two kinetically distinct phases in the pore formation process, both of which were critically dependent on cardiolipin levels. The initially fast adsorption of Bax on the mitochondrial membrane surface is followed by a slower formation of pores and Bax-lipid clusters on the membrane surface. Our findings provide a robust molecular understanding of mitochondrial membrane perforation by cell-killing Bax protein and illuminate the initial phases of programmed cellular death.


Assuntos
Apoptose , Membranas Mitocondriais , Membranas Mitocondriais/metabolismo , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/metabolismo , Apoptose/fisiologia , Cardiolipinas/metabolismo
2.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269583

RESUMO

The fourth enzymatic reaction in the de novo pyrimidine biosynthesis, the oxidation of dihydroorotate to orotate, is catalyzed by dihydroorotate dehydrogenase (DHODH). Enzymes belonging to the DHODH Class II are membrane-bound proteins that use ubiquinones as their electron acceptors. We have designed this study to understand the interaction of an N-terminally truncated human DHODH (HsΔ29DHODH) and the DHODH from Escherichia coli (EcDHODH) with ubiquinone (Q10) in supported lipid membranes using neutron reflectometry (NR). NR has allowed us to determine in situ, under solution conditions, how the enzymes bind to lipid membranes and to unambiguously resolve the location of Q10. Q10 is exclusively located at the center of all of the lipid bilayers investigated, and upon binding, both of the DHODHs penetrate into the hydrophobic region of the outer lipid leaflet towards the Q10. We therefore show that the interaction between the soluble enzymes and the membrane-embedded Q10 is mediated by enzyme penetration. We can also show that EcDHODH binds more efficiently to the surface of simple bilayers consisting of 1-palmitoyl, 2-oleoyl phosphatidylcholine, and tetraoleoyl cardiolipin than HsΔ29DHODH, but does not penetrate into the lipids to the same degree. Our results also highlight the importance of Q10, as well as lipid composition, on enzyme binding.


Assuntos
Di-Hidro-Orotato Desidrogenase/química , Di-Hidro-Orotato Desidrogenase/metabolismo , Escherichia coli/enzimologia , Bicamadas Lipídicas/metabolismo , Ubiquinona/metabolismo , Cardiolipinas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fosfatidilcolinas/metabolismo , Conformação Proteica , Domínios Proteicos
3.
Nanomaterials (Basel) ; 10(12)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291326

RESUMO

We have characterized and compared the structures of ergosterol- and cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes before and after interaction with the amphiphilic antifungal drug amphotericin B (AmB) using neutron reflection. AmB inserts into both pure POPC and sterol-containing membranes in the lipid chain region and does not significantly perturb the structure of pure POPC membranes. By selective per-deuteration of the lipids/sterols, we show that AmB extracts ergosterol but not cholesterol from the bilayers and inserts to a much higher degree in the cholesterol-containing membranes. Ergosterol extraction by AmB is accompanied by membrane thinning. Our results provide new insights into the mechanism and antifungal effect of AmB in these simple models of fungal and mammalian membranes and help understand the molecular origin of its selectivity and toxic side effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...