Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 49(10): 1126-37, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21741263

RESUMO

This study examined expression of osmotic adjustment (OA) and accumulation of solutes in wheat (Triticum aestivum L.) leaves in response to water deficit (WD) imposed at the reproductive stage. Two contrasting cultivars, Hartog and Sunco (putatively high and low in OA capacity, respectively), were grown in deep (viz. 80 cm) pots in a controlled environment. In a sandy substrate, leaf OA was 5-times greater in Hartog compared with Sunco. At 21 d of WD treatment, K(+) only accounted for 12% of OA in Hartog and 48% in Sunco with less OA (i.e. tissue K(+) led to different proportions owing to different magnitudes of OA). Glycinebetaine and proline also increased under WD, but these were not significant osmotica on a whole tissue basis. Hartog accumulated dry matter faster than Sunco under WD, and this was consistent with greater water extraction by Hartog than by Sunco. In a second experiment on Hartog, with loam added to the sand to increase water-holding capacity and thus enable a longer draw-down period, leaf OA increased to 0.37 MPa at 37 d of withholding water. K(+) increased up to 16 d of drying and then decreased towards 37 d. Glycinebetaine, proline, glucose and fructose all increased during the draw-down period, although with different dynamics; e.g. glycinebetaine increased linearly whereas glucose showed an exponential increase. By contrast, sucrose declined. K(+) was the major contributor to OA (viz. 54%) up to 30 d of drying, whereas glycinebetaine, proline and glucose were major contributors later (at d 37 these organic solutes each accounted for 19, 21 and 21% of OA). Thus, the various solutes that contributed to leaf OA in wheat cv. Hartog accumulated at different times as WD developed.


Assuntos
Osmose , Folhas de Planta/metabolismo , Triticum/metabolismo , Triticum/fisiologia , Água/metabolismo , Betaína/metabolismo , Cloretos/metabolismo , Desidratação , Frutose/metabolismo , Glucose/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Transpiração Vegetal , Potássio/metabolismo , Prolina/metabolismo , Reprodução , Sódio/metabolismo , Solo/química , Sacarose/metabolismo , Triticum/genética , Triticum/crescimento & desenvolvimento
3.
Crop Sci ; 42(1): 255-265, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11756283

RESUMO

In the rainfed lowlands, rice (Oryza sativa L.) develops roots under anaerobic soil conditions with ponded water, prior to exposure to aerobic soil conditions and water stress. Constitutive root system development in anaerobic soil conditions has been reported to have a positive effect on subsequent expression of adaptive root traits and water extraction during water stress. We examined effects of phenotyping environment on identification of quantitative trait loci (QTLs) for constitutive root morphology traits using 220 doubled-haploid lines (DHLs) from the cross of 'CT9993-5-10-1-M' (CT9993; japonica, upland adapted) x 'IR62266-42-6-2' (IR62266; indica, lowland adapted) in four greenhouse experiments. Broad sense heritability (h(2)) was 75, 60, and 64% on average for shoot biomass, deep root morphology, and root thickness traits, respectively. Quantitative trait loci analysis identified 18 genomic regions associated with deep root morphology traits, but only three were identified consistently across experiments. Three out of a total of eight QTLs for root thickness traits were found in more than one experiment. The maximum genetic effects caused by a single QTL were increments of 0.05 g of deep root mass below a 30-cm soil depth, 0.9% of deep root ratio, 1.6 cm of rooting depth, and 0.09 cm of root thickness, with phenotypic variation explained by a single QTL ranging from 6.8 to 51.8%. The results demonstrate the importance of phenotyping environment and suggest prospects for selection of QTLs for deep root morphology, root thickness, and vigorous seedling growth under anaerobic conditions to improve the constitutive root system of rainfed lowland rice. There was some consistency in QTL regions identified, despite the presence of QTL x environment interactions.

4.
Plant Physiol ; 92(2): 534-7, 1990 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16667310

RESUMO

Carbon-isotope discrimination (Delta) is used to distinguish between different photosynthetic pathways. It has also been shown that variation in Delta occurs among varieties of C(3) species, but not as yet, in C(4) species. We now report that Delta also varies among genotypes of sorghum (Sorghum bicolor Moench), a C(4) species. The discrimination in leaves of field-grown plants of 12 diverse genotypes of sorghum was measured and compared with their grain yields. Discrimination varied significantly among genotypes, and there was a significant negative correlation between grain yield and Delta. The variation in Delta may be caused by genetic differences in either leakiness of the bundle-sheath cells or by differences in the ratio of assimilation rate to stomatal conductance. At the leaf level, the former should be related to light-use efficiency of carbon fixation and the latter should be related to transpiration efficiency. Both could relate to the yield of the crop.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...