Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0291496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37699026

RESUMO

Living organisms maintain a resting membrane potential, which plays an important role in various biophysical and biological processes. In the context of medical applications, irreversible electroporation (IRE) is a non-thermal and minimally invasive technique that utilizes precisely controlled electric field pulses of micro- to millisecond durations to effectively ablate cancer and tumor cells. Previous studies on IRE-induced rupture of cell-mimetic giant unilamellar vesicles (GUVs) have primarily been conducted in the absence of membrane potentials. In this study, we investigated the electroporation of GUVs, including parameters such as the rate constant of rupture and the probability of rupture, in the presence of various negative membrane potentials. The membranes of GUVs were prepared using lipids and channel forming proteins. As the membrane potential increased from 0 to -90 mV, the rate constant of rupture showed a significant increase from (7.5 ± 1.6)×10-3 to (35.6 ± 5.5)×10-3 s-1. The corresponding probability of rupture also exhibited a notable increase from 0.40 ± 0.05 to 0.68 ± 0.05. To estimate the pore edge tension, the electric tension-dependent logarithm of the rate constant was fitted with the Arrhenius equation for different membrane potentials. The presence of membrane potential did not lead to any significant changes in the pore edge tension. The increase in electroporation is reasonably explained by the decrease in the prepore free energy barrier. The choice of buffer used in GUVs can significantly influence the kinetics of electroporation. This study provides valuable insights that can contribute to the application of electroporation techniques in the biomedical field.


Assuntos
Eletroporação , Lipossomas Unilamelares , Potenciais da Membrana , Terapia com Eletroporação , Biofísica
2.
Phys Chem Chem Phys ; 25(34): 23111-23124, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37602684

RESUMO

The membrane potential plays a significant role in various cellular processes while interacting with membrane active agents. So far, all the investigations of the interaction of nanoparticles (NPs) with lipid vesicles have been performed in the absence of membrane potential. In this study, the anionic magnetite NP-induced poration along with deformation of cell-mimetic giant unilamellar vesicles (GUVs) has been studied in the presence of various membrane potentials. Lipids 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and channel forming protein gramicidin A (GrA) are used to synthesize the DOPG/DOPC/GrA-GUVs. The static and dynamic nature of GUVs is investigated using phase contrast fluorescent microscopy. The presence of GrA in the membrane decreases the leakage constant of the encapsulating fluorescent probe (calcein) in the absence of membrane potential. With the increase of negative membrane potential, the leakage shifts from a single exponential to two exponential functions, obtaining two leakage constants. The leakage became faster at the initial stage, and at the final stage, it became slower with the increase in negative membrane potential. Both the fraction of poration and deformation increase with the increase of negative membrane potential. These results suggested that the membrane potential enhances the NP-induced poration along with the deformation of DOPG/DOPC/GrA-GUVs. The increase of the binding constant in the NPs with membrane potential is one of the important factors for increasing membrane permeation and vesicle deformation.


Assuntos
Corantes Fluorescentes , Nanopartículas , Potenciais da Membrana , Membranas , Glicerol , Gramicidina , Lipossomas Unilamelares
3.
PLoS One ; 18(7): e0289087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37523403

RESUMO

The hydrophilic polymer polyethylene glycol-grafted phospholipid has been used extensively in the study of artificial vesicles, nanomedicine, and antimicrobial peptides/proteins. In this research, the effects of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N- [methoxy (polyethylene glycol)-2000] (abbreviated PEG-DOPE) on the deformation and poration of giant unilamellar vesicles (GUVs)-induced by anionic magnetite nanoparticles (NPs) have been investigated. For this, the size of the NPs used was 18 nm, and their concentration in the physiological solution was 2.00 µg/mL. GUVs were prepared using the natural swelling method comprising 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and PEG-DOPE. The mole% of PEG-DOPE in the membranes were 0, 2, and 5%. The degree of deformation of the GUVs was quantified by the parameter compactness (Com), which is 1.0 for the spherical-shaped GUVs. The value of Com increases with time during the interactions of NPs with GUVs for any concentration of PEG-DOPE, but the rate of increase is significantly influenced by the PEG-DOPE concentration in the membranes. The average compactness increases with the increase of PEG-DOPE%, and after 60 min of NPs interaction, the values of average compactness for 0, 2, and 5% PEG-DOPE were 1.19 ± 0.02, 1.26 ± 0.03 and 1.35 ± 0.05, respectively. The fraction of deformation (Frd) also increased with the increase of PEG-DOPE%, and at 60 min, the values of Frd for 0 and 5% PEG-DOPE were 0.47 ± 0.02 and 0.63 ± 0.02, respectively. The fraction of poration (Frp) increased with the increase of PEG-DOPE, and at 60 min, the values of Frp for 0 and 5% PEG-DOPE were 0.25 ± 0.02 and 0.48 ± 0.02, respectively. Hence, the presence of PEG-grafted phospholipid in the membranes greatly enhances the anionic magnetite NPs-induced deformation and poration of giant vesicles.


Assuntos
Nanopartículas de Magnetita , Fosfolipídeos , Polietilenoglicóis , Polímeros , Lipossomas Unilamelares , Fosfatidilcolinas
4.
Heliyon ; 8(4): e09227, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35392394

RESUMO

Production of brinjal (Solanum melongena L.) is considerably reduced by infestations of root-knot nematodes (RKN). As chemical pesticides are increasingly being regulated globally, scientists are focusing on biorational management. An experiment was undertaken to screen resistant brinjal cultivars in Bangladesh against Meloidogyne javanica in a pot trial. Pot and field trials were also conducted to evaluate the efficacy and profitability of individual and combined applications of several biorational components to manage M. javanica on brinjal. Of twenty brinjal cultivars screened, cv. Noagram was found 'moderately resistant' and others were 'susceptible' to 'highly susceptible' against M. javanica. In both pot and field trials, most of the growth parameters of brinjal and reproductive parameters of M. javanica were significantly different than the control for both the individual and combined treatments of different biorational components which included cabbage, marigold, vermicompost, biogas digestate, Bacillus subtilis and Pseudomonas fluorescens. The yield was significantly higher for the combined treatments than the individual applications. The benefit-cost ratio (BCR) differed among the treatments. The highest yield (29.5 t/ha) and BCR (3.67) with the lowest reproductive factor (0.33) was obtained by the combined application of biogas digestate and B. subtilis. This is the first report on the efficiency and profitability assessment of biogas digestate in combination with a bio-agent in addressing the management of RKN, which might be very important considering the global concern of environmental pollution. The cultivar Noagram might be a potential source of resistant genes in brinjal against M. javanica.

5.
Mycorrhiza ; 24(7): 551-63, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24718965

RESUMO

To understand the reproduction of the pioneer ectomycorrhizal fungi Laccaria amethystina and Laccaria laccata in a volcanic desert on Mount Fuji, Japan, the in situ genet dynamics of sporocarps were analysed. Sporocarps of the two Laccaria species were sampled at fine and large scales for 3 and 2 consecutive years, respectively, and were genotyped using microsatellite markers. In the fine-scale analysis, we found many small genets, the majority of which appeared and disappeared annually. The high densities and annual renewal of Laccaria genets indicate frequent turnover by sexual reproduction via spores. In the large-scale analysis, we found positive spatial autocorrelations in the shortest distance class. An allele-clustering analysis also showed that several alleles were distributed in only a small, localised region. These results indicate that Laccaria spores contributing to sexual reproduction may be dispersed only short distances from sporocarps that would have themselves been established via rare, long-distance spore dispersal. This combination of rare, long-distance and frequent, short-distance Laccaria spore dispersal is reflected in the establishment pattern of seeds of their host, Salix reinii.


Assuntos
Variação Genética , Laccaria/classificação , Laccaria/genética , Micorrizas/classificação , Micorrizas/genética , Esporos Fúngicos/classificação , Esporos Fúngicos/genética , Alelos , Japão , Laccaria/isolamento & purificação , Micorrizas/isolamento & purificação , Densidade Demográfica , Dinâmica Populacional , Esporos Fúngicos/isolamento & purificação , Erupções Vulcânicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA