Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Neurosci ; 42(16): 3494-3509, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35273086

RESUMO

Several cellular pathways contribute to neurodegenerative tauopathy-related disorders. Microglial activation, a major component of neuroinflammation, is an early pathologic hallmark that correlates with cognitive decline, while the unfolded protein response (UPR) contributes to synaptic pathology. Sleep disturbances are prevalent in tauopathies and may also contribute to disease progression. Few studies have investigated whether manipulations of sleep influence cellular pathologic and behavioral features of tauopathy. We investigated whether trazodone, a licensed antidepressant with hypnotic efficacy in dementia, can reduce disease-related cellular pathways and improve memory and sleep in male rTg4510 mice with a tauopathy-like phenotype. In a 9 week dosing regimen, trazodone decreased microglial NLRP3 inflammasome expression and phosphorylated p38 mitogen-activated protein kinase levels, which correlated with the NLRP3 inflammasome, the UPR effector ATF4, and total tau levels. Trazodone reduced theta oscillations during rapid eye movement (REM) sleep and enhanced REM sleep duration. Olfactory memory transiently improved, and memory performance correlated with REM sleep duration and theta oscillations. These findings on the effects of trazodone on the NLRP3 inflammasome, the unfolded protein response and behavioral hallmarks of dementia warrant further studies on the therapeutic value of sleep-modulating compounds for tauopathies.SIGNIFICANCE STATEMENT Dementia and associated behavioral symptoms such as memory loss and sleep disturbance are debilitating. Identifying treatments that alleviate symptoms and concurrently target cellular pathways contributing to disease progression is paramount for the patients and their caregivers. Here we show that a chronic treatment with trazodone, an antidepressant with positive effects on sleep, has beneficial effects on several cellular pathways contributing to neuroinflammation and tau pathology, in tauopathy-like rTg4510 mice. Trazodone also improved rapid eye movement (REM) sleep, the slowing of brain oscillations, and olfactory memory disturbances, which are all early symptoms observed in Alzheimer's disease. Thus, trazodone and compounds with REM sleep-promoting properties may represent a promising treatment approach to reduce the early symptoms of tauopathy and slow down disease progression.


Assuntos
Doença de Alzheimer , Transtornos do Sono-Vigília , Tauopatias , Trazodona , Doença de Alzheimer/tratamento farmacológico , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Inflamassomos , Masculino , Transtornos da Memória/genética , Camundongos , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sono/fisiologia , Tauopatias/metabolismo , Trazodona/farmacologia , Trazodona/uso terapêutico , Proteínas tau/metabolismo
2.
J Pharmacol Exp Ther ; 380(3): 143-152, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34893551

RESUMO

Dopamine (DA) plays a key role in several central functions including cognition, motor activity, and wakefulness. Although efforts to develop dopamine receptor 1 (D1) agonists have been challenging, a positive allosteric modulator represents an attractive approach with potential better drug-like properties. Our previous study demonstrated an acceptable safety and tolerability profile of the dopamine receptor 1 positive allosteric modulator (D1PAM) mevidalen (LY3154207) in single and multiple ascending dose studies in healthy volunteers (Wilbraham et al., 2021). Herein, we describe the effects of mevidalen on sleep and wakefulness in humanized dopamine receptor 1 (hD1) mice and in sleep-deprived healthy male volunteers. Mevidalen enhanced wakefulness (latency to fall asleep) in the hD1 mouse in a dose dependent [3-100 mg/kg, orally (PO)] fashion when measured during the light (zeitgeber time 5) and predominantly inactive phase. Mevidalen promoted wakefulness in mice after prior sleep deprivation and delayed sleep onset by 5.5- and 15.2-fold compared with vehicle-treated animals, after the 20 and 60 mg/kg PO doses, respectively, when compared with vehicle-treated animals. In humans, mevidalen demonstrated a dose-dependent increase in latency to sleep onset as measured by the multiple sleep latency test and all doses (15, 30, and 75 mg) separated from placebo at the first 2-hour postdose time point with a circadian effect at the 6-hour postdose time point. Sleep wakefulness should be considered a translational biomarker for the dopamine receptor 1 positive allosteric modulator mechanism. SIGNIFICANCE STATEMENT: This is the first translational study describing the effects of a selective dopamine receptor 1 positive allosteric modulator (D1PAM) on sleep and wakefulness in the human dopamine receptor 1 mouse and in sleep-deprived healthy male volunteers. In both species, drug exposure correlated with sleep latency, supporting the use of sleep-wake activity as a translational central biomarker for D1PAM. Wake-promoting effects of D1PAMs may offer therapeutic opportunities in several conditions, including sleep disorders and excessive daytime sleepiness related to neurodegenerative disorders.


Assuntos
Fármacos Neuroprotetores , Vigília , Animais , Voluntários Saudáveis , Humanos , Isoquinolinas , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Receptores de Dopamina D1 , Sono/fisiologia
3.
Neuropsychopharmacology ; 46(6): 1194-1206, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33342996

RESUMO

Cholinergic drugs acting at M1/M4 muscarinic receptors hold promise for the treatment of symptoms associated with brain disorders characterized by cognitive impairment, mood disturbances, or psychosis, such as Alzheimer's disease or schizophrenia. However, the brain-wide functional substrates engaged by muscarinic agonists remain poorly understood. Here we used a combination of pharmacological fMRI (phMRI), resting-state fMRI (rsfMRI), and resting-state quantitative EEG (qEEG) to investigate the effects of a behaviorally active dose of the M1/M4-preferring muscarinic agonist xanomeline on brain functional activity in the rodent brain. We investigated both the effects of xanomeline per se and its modulatory effects on signals elicited by the NMDA-receptor antagonists phencyclidine (PCP) and ketamine. We found that xanomeline induces robust and widespread BOLD signal phMRI amplitude increases and decreased high-frequency qEEG spectral activity. rsfMRI mapping in the mouse revealed that xanomeline robustly decreased neocortical and striatal connectivity but induces focal increases in functional connectivity within the nucleus accumbens and basal forebrain. Notably, xanomeline pre-administration robustly attenuated both the cortico-limbic phMRI response and the fronto-hippocampal hyper-connectivity induced by PCP, enhanced PCP-modulated functional connectivity locally within the nucleus accumbens and basal forebrain, and reversed the gamma and high-frequency qEEG power increases induced by ketamine. Collectively, these results show that xanomeline robustly induces both cholinergic-like neocortical activation and desynchronization of functional networks in the mammalian brain. These effects could serve as a translatable biomarker for future clinical investigations of muscarinic agents, and bear mechanistic relevance for the putative therapeutic effect of these class of compounds in brain disorders.


Assuntos
Agonistas Muscarínicos , Tiadiazóis , Animais , Hipocampo/metabolismo , Camundongos , Agonistas Muscarínicos/farmacologia , Piridinas , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M4/metabolismo
4.
Cereb Circ Cogn Behav ; 2: 100025, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36324713

RESUMO

Sleep takes up a large percentage of our lives and the full functions of this state are still not understood. However, over the last 10 years a new and important function has emerged as a mediator of brain clearance. Removal of toxic metabolites and proteins from the brain parenchyma generated during waking activity and high levels of synaptic processing is critical to normal brain function and only enabled during deep sleep. Understanding of this process is revealing how impaired sleep contributes an important and likely causative role in the accumulation and aggregation of aberrant proteins such as ß-amyloid and phosphorylated tau, as well as inflammation and neuronal damage. We are also beginning to understand how brain slow-wave activity interacts with vascular function allowing the flow of CSF and interstitial fluid to drain into the body's lymphatic system. New methodology is enabling visualization of this process in both animals and humans and is revealing how these processes break down during ageing and disease. With this understanding we can begin to envisage novel therapeutic approaches to the treatment of neurodegeneration, and how reversing sleep impairment in the correct manner may provide a way to slow these processes and improve brain function.

5.
Sleep ; 42(9)2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31106825

RESUMO

Increasing vigilance without incurring the negative consequences of extended wakefulness such as daytime sleepiness and cognitive impairment is a major challenge in treating many sleep disorders. The present work compares two closely related mGluR2/3 antagonists LY3020371 and LY341495 with two well-known wake-promoting compounds caffeine and d-amphetamine. Sleep homeostasis properties were explored in male Wistar rats by manipulating levels of wakefulness via (1) physiological sleep restriction (SR), (2) pharmacological action, or (3) a combination of these. A two-phase nonlinear mixed-effects model combining a quadratic and exponential function at an empirically estimated join point allowed the quantification of wake-promoting properties and any subsequent sleep rebound. A simple response latency task (SRLT) following SR assessed functional capacity of sleep-restricted animals treated with our test compounds. Caffeine and d-amphetamine increased wakefulness with a subsequent full recovery of non-rapid eye movement (NREM) and rapid eye movement (REM) sleep and were unable to fully reverse SR-induced impairments in SRLT. In contrast, LY3020371 increased wakefulness with no subsequent elevation of NREM sleep, delta power, delta energy, or sleep bout length and count, yet REM sleep recovered above baseline levels. Prior sleep pressure obtained using an SR protocol had no impact on the wake-promoting effect of LY3020371 and NREM sleep rebound remained blocked. Furthermore, LY341495 increased functional capacity across SRLT measures following SR. These results establish the critical role of glutamate in sleep homeostasis and support the existence of independent mechanisms for NREM and REM sleep homeostasis.


Assuntos
Tempo de Reação/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/agonistas , Privação do Sono/fisiopatologia , Sono/efeitos dos fármacos , Vigília/fisiologia , Aminoácidos/farmacologia , Animais , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Cicloexanos/farmacologia , Dextroanfetamina/farmacologia , Eletroencefalografia/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Homeostase/fisiologia , Masculino , Ratos , Ratos Wistar , Sono/fisiologia , Privação do Sono/induzido quimicamente , Sono REM/fisiologia , Xantenos/farmacologia
6.
Proc Natl Acad Sci U S A ; 116(7): 2733-2742, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30683720

RESUMO

One of sleep's putative functions is mediation of adaptation to waking experiences. Chronic stress is a common waking experience; however, which specific aspect of sleep is most responsive, and how sleep changes relate to behavioral disturbances and molecular correlates remain unknown. We quantified sleep, physical, endocrine, and behavioral variables, as well as the brain and blood transcriptome in mice exposed to 9 weeks of unpredictable chronic mild stress (UCMS). Comparing 46 phenotypic variables revealed that rapid-eye-movement sleep (REMS), corticosterone regulation, and coat state were most responsive to UCMS. REMS theta oscillations were enhanced, whereas delta oscillations in non-REMS were unaffected. Transcripts affected by UCMS in the prefrontal cortex, hippocampus, hypothalamus, and blood were associated with inflammatory and immune responses. A machine-learning approach controlling for unspecific UCMS effects identified transcriptomic predictor sets for REMS parameters that were enriched in 193 pathways, including some involved in stem cells, immune response, and apoptosis and survival. Only three pathways were enriched in predictor sets for non-REMS. Transcriptomic predictor sets for variation in REMS continuity and theta activity shared many pathways with corticosterone regulation, in particular pathways implicated in apoptosis and survival, including mitochondrial apoptotic machinery. Predictor sets for REMS and anhedonia shared pathways involved in oxidative stress, cell proliferation, and apoptosis. These data identify REMS as a core and early element of the response to chronic stress, and identify apoptosis and survival pathways as a putative mechanism by which REMS may mediate the response to stressful waking experiences.


Assuntos
Apoptose , Comportamento Animal , Corticosterona/metabolismo , Sono REM , Estresse Psicológico , Animais , Doença Crônica , Eletroencefalografia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Transcriptoma , Vigília/fisiologia
7.
Neurosci Biobehav Rev ; 97: 112-137, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30312626

RESUMO

The high prevalence of sleep disturbance in neurodegenerative and psychiatric conditions is often interpreted as evidence for both sleep's sensitivity to and causal involvement in brain pathology. Nevertheless, how and which aspects of sleep contribute to brain function remains largely unknown. This review provides a critical evaluation of clinical and animal literature describing sleep and circadian disturbances in two distinct conditions and animal models thereof: Alzheimer's disease (AD) and schizophrenia. Its goal is to identify commonalities and distinctiveness of specific aspects of sleep disturbance and their relationship to symptoms across conditions. Despite limited standardisation, data imply that reductions in sleep continuity and alterations in sleep timing are common to AD and schizophrenia, whereas reductions in REM sleep and sleep spindle activity appear more specific to AD and schizophrenia, respectively. Putative mechanisms underlying these alterations are discussed. A standardised neuroscience based quantification of sleep and disease-independent assessment of symptoms in patients and animal models holds promise for furthering the understanding of mechanistic links between sleep and brain function in health and disease.


Assuntos
Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Encéfalo/fisiopatologia , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico , Transtornos do Sono-Vigília/complicações , Sono , Doença de Alzheimer/complicações , Animais , Ritmo Circadiano , Modelos Animais de Doenças , Humanos , Modelos Animais , Esquizofrenia/complicações
8.
Neuropharmacology ; 140: 246-259, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30005976

RESUMO

Group II metabotropic glutamate receptors (mGluR2 and mGluR3) are implicated in a number of psychiatric disorders. They also control sleep-wake architecture and may offer novel therapeutic targets. However, the roles of the mGluR2 versus mGluR3 subtypes are not well understood. Here, we have taken advantage of the recently described mutant strain of Han Wistar rats, which do not express mGluR2 receptors, to investigate behavioural, sleep and EEG responses to mGluR2/3 ligands. The mGluR2/3 agonist, LY354740 (10 mg/kg), reversed amphetamine- and phencyclidine-induced locomotion and rearing behaviours in control Wistar but not in mGluR2 lacking Han Wistar rats. In control Wistar but not in Han Wistar rats the mGluR2/3 agonist LY379268 (3 & 10 mg/kg) induced REM sleep suppression with dose-dependent effects on wake and NREM sleep. By contrast, the mGluR2/3 antagonist LY3020371 (3 & 10 mg/kg) had wake-promoting effects in both rat strains, albeit smaller in the mGluR2-lacking Han Wistar rats, indicating both mGluR2 and mGluR3-mediated effects on wakefulness. LY3020371 enhanced wake cortical oscillations in the theta (4-9 Hz) and gamma (30-80 Hz) range in both Wistar and Han Wistar rat strains, whereas LY379268 reduced theta and gamma oscillations in control Wistar rats, with minimal effects in Han Wistar rats. Together these studies illustrate the significant contribution of mGluR2 to the antipsychotic-like, sleep and EEG effects of drugs acting on group II mGluRs. However, we also provide evidence of a role for mGluR3 activity in the control of sleep and wake cortical theta and gamma oscillations.


Assuntos
Antipsicóticos/farmacologia , Receptores de Glutamato Metabotrópico/fisiologia , Sono/fisiologia , Vigília/efeitos dos fármacos , Vigília/fisiologia , Aminoácidos/farmacologia , Anfetamina/antagonistas & inibidores , Anfetamina/farmacologia , Animais , Compostos Bicíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cicloexanos/farmacologia , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/farmacologia , Ritmo Gama/efeitos dos fármacos , Ritmo Gama/fisiologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Mutação , Fenciclidina/antagonistas & inibidores , Fenciclidina/farmacologia , Ratos , Receptores de Glutamato Metabotrópico/deficiência , Receptores de Glutamato Metabotrópico/genética , Sono/efeitos dos fármacos , Ritmo Teta/efeitos dos fármacos , Ritmo Teta/fisiologia
9.
J Neurosci ; 38(16): 3911-3928, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29581380

RESUMO

Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture.SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we performed chronic electrophysiological recordings of cortical neural activity during waking, sleep, and after sleep deprivation from young and older mice. We found that all main hallmarks of cortical activity during spontaneous sleep and recovery sleep after sleep deprivation were largely intact in older mice, suggesting that the well-described age-related changes in global sleep are unlikely to arise from a disruption of local network dynamics within the neocortex.


Assuntos
Envelhecimento/fisiologia , Córtex Motor/fisiologia , Fases do Sono , Animais , Excitabilidade Cortical , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/citologia , Córtex Motor/crescimento & desenvolvimento , Neurônios/fisiologia
10.
Neuropharmacology ; 128: 351-365, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29102759

RESUMO

DETQ, an allosteric potentiator of the dopamine D1 receptor, was tested in therapeutic models that were known to respond to D1 agonists. Because of a species difference in affinity for DETQ, all rodent experiments used transgenic mice expressing the human D1 receptor (hD1 mice). When given alone, DETQ reversed the locomotor depression caused by a low dose of reserpine. DETQ also acted synergistically with L-DOPA to reverse the strong hypokinesia seen with a higher dose of reserpine. These results indicate potential as both monotherapy and adjunct treatment in Parkinson's disease. DETQ markedly increased release of both acetylcholine and histamine in the prefrontal cortex, and increased levels of histamine metabolites in the striatum. In the hippocampus, the combination of DETQ and the cholinesterase inhibitor rivastigmine increased ACh to a greater degree than either agent alone. DETQ also increased phosphorylation of the AMPA receptor (GluR1) and the transcription factor CREB in the striatum, consistent with enhanced synaptic plasticity. In the Y-maze, DETQ increased arm entries but (unlike a D1 agonist) did not reduce spontaneous alternation between arms at high doses. DETQ enhanced wakefulness in EEG studies in hD1 mice and decreased immobility in the forced-swim test, a model for antidepressant-like activity. In rhesus monkeys, DETQ increased spontaneous eye-blink rate, a measure that is known to be depressed in Parkinson's disease. Together, these results provide support for potential utility of D1 potentiators in the treatment of several neuropsychiatric disorders, including Parkinson's disease, Alzheimer's disease, cognitive impairment in schizophrenia, and major depressive disorder.


Assuntos
Doenças do Sistema Nervoso/metabolismo , Transtornos Psicóticos/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Antipsicóticos/uso terapêutico , Piscadela/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopaminérgicos/uso terapêutico , Isoquinolinas/uso terapêutico , Levodopa/uso terapêutico , Macaca mulatta , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças do Sistema Nervoso/tratamento farmacológico , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Transtornos Psicóticos/tratamento farmacológico , Receptores de Dopamina D1/genética , Reserpina/uso terapêutico , Sono/efeitos dos fármacos , Vigília/efeitos dos fármacos
11.
Neuropharmacology ; 126: 257-270, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28757050

RESUMO

6-[(1S)-1-[1-[5-(2-hydroxyethoxy)-2-pyridyl]pyrazol-3-yl]ethyl]-3H-1,3-benzothiazol-2-one (LY3130481 or CERC-611) is a selective antagonist of AMPA receptors containing transmembrane AMPA receptor regulatory protein (TARP) γ-8. This molecule has been characterized as a potent and efficacious anticonvulsant in an array of acute and chronic epilepsy models in rodents. The present set of experiments was designed to assess the effects of LY3130481 on the electroencephelogram (EEG), cognitive function, and neurochemical outflow. LY3130481 disrupted food-maintained responding in rats and spontaneous alternation in a Y-maze in mice. In rat fear conditioning, LY3130481 caused a deficit in trace (hippocampal-dependent), but not in delay fear conditioning. Although these effects on cognitive performances were observed, the known cognitive-impairing anticonvulsant, topiramate, did not always produce deficits under these assay conditions. LY3130481 produced modest increases in wake times in rats. In addition, LY3130481 was able to attenuate some impairing effects of standard antiepileptic drugs. The motor-impairing effects of the lacosamide were attenuated by LY3130481 as was the decrease in non-rapid-eye movement sleep induced by carbamazepine. Evaluation of the effect of LY3130481 on neurotransmitter and metabolite efflux in the rat medial prefrontal cortex, using in vivo microdialysis, revealed significant increases in the pro-cognitive and wake-promoting neurotransmitters, histamine and acetylcholine, as well as in serotonin, telemethylhistamine, 5-HIAA, HVA and MHPG. LY3130481 thus presents a novel behavioral profile that will have to be evaluated in patients to fully appreciate its implications for therapeutics. LY3130481 is currently under clinical development as CERC-611 as an antiepileptic.


Assuntos
Anticonvulsivantes/administração & dosagem , Benzotiazóis/administração & dosagem , Canais de Cálcio/fisiologia , Cognição/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Pirazóis/administração & dosagem , Acetilcolina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Eletroencefalografia , Medo/efeitos dos fármacos , Frutose/administração & dosagem , Frutose/análogos & derivados , Histamina/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Nitrilas , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Piridonas/administração & dosagem , Ratos Sprague-Dawley , Ratos Wistar , Serotonina/metabolismo , Fases do Sono/efeitos dos fármacos , Topiramato
12.
Sci Rep ; 7(1): 8086, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28808347

RESUMO

Understanding brain function at the cell and circuit level requires representation of neuronal activity through multiple recording sites and at high sampling rates. Traditional tethered recording systems restrict movement and limit the environments suitable for testing, while existing wireless technology is still too heavy for extended recording in mice. Here we tested TaiNi, a novel ultra-lightweight (<2 g) low power wireless system allowing 72-hours of recording from 16 channels sampled at ~19.5 KHz (9.7 KHz bandwidth). We captured local field potentials and action-potentials while mice engaged in unrestricted behaviour in a variety of environments and while performing tasks. Data was synchronized to behaviour with sub-second precision. Comparisons with a state-of-the-art wireless system demonstrated a significant improvement in behaviour owing to reduced weight. Parallel recordings with a tethered system revealed similar spike detection and clustering. TaiNi represents a significant advance in both animal welfare in electrophysiological experiments, and the scope for continuously recording large amounts of data from small animals.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Bem-Estar do Animal , Animais , Eletrofisiologia/métodos , Feminino , Camundongos , Neurofisiologia/métodos , Tecnologia sem Fio
13.
Neuropharmacology ; 119: 141-156, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28400257

RESUMO

In vivo, theta (4-7 Hz) and gamma (30-80 Hz) neuronal network oscillations are known to coexist and display phase-amplitude coupling (PAC). However, in vitro, these oscillations have for many years been studied in isolation. Using an improved brain slice preparation technique we have, using co-application of carbachol (10 µM) and kainic acid (150 nM), elicited simultaneous theta (6.6 ± 0.1 Hz) and gamma (36.6 ± 0.4 Hz) oscillations in rodent primary motor cortex (M1). Each oscillation showed greatest power in layer V. Using a variety of time series analyses we detected significant cross-frequency coupling in 74% of slice preparations. Differences were observed in the pharmacological profile of each oscillation. Thus, gamma oscillations were reduced by the GABAA receptor antagonists, gabazine (250 nM and 2 µM), and picrotoxin (50 µM) and augmented by AMPA receptor antagonism with SYM2206 (20 µM). In contrast, theta oscillatory power was increased by gabazine, picrotoxin and SYM2206. GABAB receptor blockade with CGP55845 (5 µM) increased both theta and gamma power, and similar effects were seen with diazepam, zolpidem, MK801 and a series of metabotropic glutamate receptor antagonists. Oscillatory activity at both frequencies was reduced by the gap junction blocker carbenoxolone (200 µM) and by atropine (5 µM). These data show theta and gamma oscillations in layer V of rat M1 in vitro are cross-frequency coupled, and are mechanistically distinct. The development of an in vitro model of phase-amplitude coupled oscillations will facilitate further mechanistic investigation of the generation and modulation of coupled activity in mammalian cortex.


Assuntos
Ritmo Gama/fisiologia , Córtex Motor/fisiologia , Ritmo Teta/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios , Ritmo Gama/efeitos dos fármacos , Técnicas In Vitro , Ácido Caínico/farmacologia , Masculino , Córtex Motor/efeitos dos fármacos , Neurotransmissores/farmacologia , Ratos , Ratos Wistar , Receptores de GABA/metabolismo , Ritmo Teta/efeitos dos fármacos
14.
ACS Chem Biol ; 12(6): 1593-1602, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28414209

RESUMO

In this work, we describe the computational ("in silico") mode-of-action analysis of CNS-active drugs, which is taking both multiple simultaneous hypotheses as well as sets of protein targets for each mode-of-action into account, and which was followed by successful prospective in vitro and in vivo validation. Using sleep-related phenotypic readouts describing both efficacy and side effects for 491 compounds tested in rat, we defined an "optimal" (desirable) sleeping pattern. Compounds were subjected to in silico target prediction (which was experimentally confirmed for 21 out of 28 cases), followed by the utilization of decision trees for deriving polypharmacological bioactivity profiles. We demonstrated that predicted bioactivities improved classification performance compared to using only structural information. Moreover, DrugBank molecules were processed via the same pipeline, and compounds in many cases not annotated as sedative-hypnotic (alcaftadine, benzatropine, palonosetron, ecopipam, cyproheptadine, sertindole, and clopenthixol) were prospectively validated in vivo. Alcaftadine, ecopipam cyproheptadine, and clopenthixol were found to promote sleep as predicted, benzatropine showed only a small increase in NREM sleep, whereas sertindole promoted wakefulness. To our knowledge, the sedative-hypnotic effects of alcaftadine and ecopipam have not been previously discussed in the literature. The method described extends previous single-target, single-mode-of-action models and is applicable across disease areas.


Assuntos
Hipnóticos e Sedativos/farmacologia , Polifarmacologia , Animais , Benzazepinas/farmacologia , Pesquisa Biomédica/métodos , Simulação por Computador , Hipnóticos e Sedativos/classificação , Imidazóis/farmacologia , Ratos
15.
Neuropharmacology ; 115: 128-138, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-26987983

RESUMO

Modulation of metabotropic glutamate 2 (mGlu2) receptor function has huge potential for treating psychiatric and neurological diseases. Development of drugs acting on mGlu2 receptors depends on the development and use of translatable animal models of disease. We report here a stop codon mutation at cysteine 407 in Grm2 (cys407*) that is common in some Wistar rats. Therefore, researchers in this field need to be aware of strains with this mutation. Our genotypic survey found widespread prevalence of the mutation in commercial Wistar strains, particularly those known as Han Wistar. Such Han Wistar rats are ideal for research into the separate roles of mGlu2 and mGlu3 receptors in CNS function. Previous investigations, unknowingly using such mGlu2 receptor-lacking rats, provide insights into the role of mGlu2 receptors in behaviour. The Grm2 mutant rats, which dominate some selectively bred lines, display characteristics of altered emotionality, impulsivity and risk-related behaviours and increased voluntary alcohol intake compared with their mGlu2 receptor-competent counterparts. In addition, the data further emphasize the potential therapeutic role of mGlu2 receptors in psychiatric and neurological disease, and indicate novel methods of studying the role of mGlu2 and mGlu3 receptors. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Cistina/genética , Emoções/fisiologia , Mutação/genética , Receptores de Glutamato Metabotrópico/genética , Assunção de Riscos , Consumo de Bebidas Alcoólicas/psicologia , Animais , Hipocampo/fisiologia , Camundongos Knockout , Técnicas de Cultura de Órgãos , Prevalência , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/deficiência , Especificidade da Espécie
16.
J Sleep Res ; 26(2): 179-187, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27739157

RESUMO

While several methods have been used to restrict the sleep of experimental animals, it is often unclear whether these different forms of sleep restriction have comparable effects on sleep-wake architecture or functional capacity. The present study compared four models of sleep restriction, using enforced wakefulness by rotation of cylindrical home cages over 11 h in male Wistar rats. These included an electroencephalographic-driven 'Biofeedback' method and three non-invasive methods where rotation was triggered according to a 'Constant', 'Decreasing' or random protocol based upon the 'Weibull' distribution fit to an archival Biofeedback dataset. Sleep-wake architecture was determined using polysomnography, and functional capacity was assessed immediately post-restriction with a simple response latency task, as a potential homologue of the human psychomotor vigilance task. All sleep restriction protocols resulted in sleep loss, behavioural task disengagement and rebound sleep, although no model was as effective as real-time electroencephalographic-Biofeedback. Decreasing and Weibull protocols produced greater recovery sleep than the Constant protocol, mirrored by comparably poorer simple response latency task performance. Increases in urinary corticosterone levels following Constant and Decreasing protocols suggested that stress levels may differ between protocols. Overall, these results provide insight into the value of choosing a specific sleep restriction protocol, not only from the perspective of animal welfare and the use of less invasive procedures, but also translational validity. A more considered choice of the physiological and functional effects of sleep-restriction protocols in rodents may improve correspondence with specific types of excessive daytime sleepiness in humans.


Assuntos
Atenção/fisiologia , Privação do Sono/fisiopatologia , Sono/fisiologia , Vigília/fisiologia , Animais , Biorretroalimentação Psicológica , Corticosterona/urina , Eletroencefalografia , Masculino , Polissonografia , Ratos , Ratos Wistar , Tempo de Reação/fisiologia , Rotação , Privação do Sono/urina , Análise e Desempenho de Tarefas , Fatores de Tempo
17.
J Med Chem ; 59(24): 10974-10993, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28002967

RESUMO

As part of our ongoing efforts to identify novel ligands for the metabotropic glutamate 2 and 3 (mGlu2/3) receptors, we have incorporated substitution at the C3 and C4 positions of the (1S,2R,5R,6R)-2-amino-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid scaffold to generate mGlu2/3 antagonists. Exploration of this structure-activity relationship (SAR) led to the identification of (1S,2R,3S,4S,5R,6R)-2-amino-3-[(3,4-difluorophenyl)sulfanylmethyl]-4-hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid hydrochloride (LY3020371·HCl, 19f), a potent, selective, and maximally efficacious mGlu2/3 antagonist. Further characterization of compound 19f binding to the human metabotropic 2 glutamate (hmGlu2) site was established by cocrystallization of this molecule with the amino terminal domain (ATD) of the hmGlu2 receptor protein. The resulting cocrystal structure revealed the specific ligand-protein interactions, which likely explain the high affinity of 19f for this site and support its functional mGlu2 antagonist pharmacology. Further characterization of 19f in vivo demonstrated an antidepressant-like signature in the mouse forced-swim test (mFST) assay when brain levels of this compound exceeded the cellular mGlu2 IC50 value.


Assuntos
Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Descoberta de Drogas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Animais , Antidepressivos/síntese química , Antidepressivos/química , Encéfalo/efeitos dos fármacos , Cicloexanos/síntese química , Cicloexanos/química , Cicloexanos/farmacologia , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Modelos Moleculares , Estrutura Molecular , Atividade Motora/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/isolamento & purificação , Relação Estrutura-Atividade , Natação
18.
Nat Med ; 22(12): 1496-1501, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27820603

RESUMO

Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.


Assuntos
Anticonvulsivantes/farmacologia , Benzotiazóis/farmacologia , Cerebelo/efeitos dos fármacos , Epilepsia/tratamento farmacológico , Prosencéfalo/efeitos dos fármacos , Pirazóis/farmacologia , Piridonas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Animais , Anticonvulsivantes/efeitos adversos , Canais de Cálcio/metabolismo , Cerebelo/metabolismo , Convulsivantes/toxicidade , Modelos Animais de Doenças , Tontura/induzido quimicamente , Epilepsia/induzido quimicamente , Camundongos , Nitrilas , Pentilenotetrazol/toxicidade , Prosencéfalo/metabolismo , Piridonas/efeitos adversos , Ratos , Receptores de AMPA/metabolismo , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
19.
Bioorg Med Chem Lett ; 26(23): 5663-5668, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836401

RESUMO

Negative modulators of metabotropic glutamate 2 & 3 receptors demonstrate antidepressant-like activity in animal models and hold promise as novel therapeutic agents for the treatment of major depressive disorder. Herein we describe our efforts to prepare and optimize a series of conformationally constrained 3,4-disubstituted bicyclo[3.1.0]hexane glutamic acid analogs as orthosteric (glutamate site) mGlu2/3 receptor antagonists. This work led to the discovery of a highly potent and efficacious tool compound 18 (hmGlu2 IC50 46±14.2nM, hmGlu3 IC50=46.1±36.2nM). Compound 18 showed activity in the mouse forced swim test with a minimal effective dose (MED) of 1mg/kg ip. While in rat EEG studies it exhibited wake promoting effects at 3 and 10mg/kg ip without any significant effects on locomotor activity. Compound 18 thus represents a novel tool molecule for studying the impact of blocking mGlu2/3 receptors both in vitro and in vivo.


Assuntos
Antidepressivos/química , Antidepressivos/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Ácido Glutâmico/análogos & derivados , Ácido Glutâmico/farmacologia , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Animais , Antidepressivos/farmacocinética , Compostos Bicíclicos com Pontes/química , Compostos Bicíclicos com Pontes/farmacocinética , Compostos Bicíclicos com Pontes/farmacologia , Linhagem Celular , Transtorno Depressivo Maior/metabolismo , Cães , Ácido Glutâmico/farmacocinética , Haplorrinos , Hexanos/química , Hexanos/farmacocinética , Hexanos/farmacologia , Humanos , Células Madin Darby de Rim Canino , Camundongos , Ratos , Receptores de Glutamato Metabotrópico/metabolismo
20.
Neuropharmacology ; 108: 415-25, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27150557

RESUMO

Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCA), on the regulation of REM sleep in rats. REM sleep was first demonstrated to be homeostatically regulated using 5, 8 and 10 h of REM-sleep specific restriction through EEG-triggered arousals, with an average of 91 ± 10% of lost REM sleep recovered following a 26-29 -hour recovery period. Acute treatment with the antidepressants paroxetine, citalopram and imipramine inhibited REM sleep by 84 ± 8, 84 ± 8 and 69 ± 9% respectively relative to vehicle control. The pharmacologically-induced REM sleep deficits by paroxetine and citalopram were not fully recovered, whereas, after imipramine the REM sleep deficit was fully compensated. Given the marked difference between REM sleep recovery following the administration of paroxetine, citalopram, imipramine and REM sleep restriction, the homeostatic response was further examined by pairing REM sleep specific restriction with the three antidepressants. Surprisingly, the physiologically-induced REM sleep deficits incurred prior to suppression of REM sleep by all antidepressants was consistently recovered. The data indicate that REM sleep homeostasis remains operative following subsequent treatment with antidepressants and is unaffected by additional pharmacological inhibition of REM sleep.


Assuntos
Antidepressivos/farmacologia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Sono REM/efeitos dos fármacos , Sono REM/fisiologia , Animais , Antidepressivos Tricíclicos/farmacologia , Masculino , Ratos , Ratos Wistar , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...