Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36987053

RESUMO

Plants have evolved various mechanisms for low P tolerance, one of which is changing their membrane lipid composition by remodeling phospholipids with non-phospholipids. The objective of this study was to investigate the remodeling of membrane lipids among rice cultivars under P deficiency. Rice (Oryza sativa L.) cultivars (Akamai, Kiyonishiki, Akitakomachi, Norin No. 1, Hiyadateine, Koshihikari, and Netaro) were grown in 0 (-P) and 8 (+P) mg P L-1 solution cultures. Shoots and roots were collected 5 and 10 days after transplanting (DAT) in solution culture and subjected to lipidome profiling using liquid chromatography-mass spectrometry. Phosphatidylcholine (PC)34, PC36, phosphatidylethanolamine (PE)34, PE36, phosphatidylglycerol (PG)34, phosphatidylinositol (PI)34 were the major phospholipids and digalactosyldiacylglycerol (DGDG)34, DGDG36, 1,2-diacyl-3-O-alpha-glucuronosylglycerol (GlcADG)34, GlcADG36, monogalactosyldiacylglycerol (MGDG)34, MGDG36, sulfoquinovosyldiacylglycerol (SQDG)34 and SQDG36 were the major non-phospholipids. Phospholipids were lower in the plants that were grown under -P conditions than that in the plants that were grown under +P for all cultivars at 5 and 10 DAT. The levels of non-phospholipids were higher in -P plants than that in +P plants of all cultivars at 5 and 10 DAT. Decomposition of phospholipids in roots at 5 DAT correlated with low P tolerance. These results suggest that rice cultivars remodel membrane lipids under P deficiency, and the ability of remodeling partly contributes to low P tolerance.

2.
Environ Sci Pollut Res Int ; 27(4): 4460-4467, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31832957

RESUMO

Oil extraction is one of the causes of soil contamination with the total petroleum hydrocarbons. The objective of this study was to clarify the effect of Asteraceae plants on the degradation of petroleum hydrocarbon in contaminated soil. Initial soils with 40 and 90 g kg-1 of total petroleum hydrocarbon (TPH) were prepared. There were three treatments: (1) no addition, (2) addition of FeCl3 and nitrilotriacetic acid (NTA) solution, and (3) addition of FeCl3 + NTA and the cultivation of nine Asteraceae plants. The concentration of TPH was measured using infrared spectrophotometer, 2 and 3 months after transplanting (MAT). Shoot and root dry weights were measured 3 MAT. The concentration of TPH in soil cultivated with Cosmos caudatus was lower than that of the initial soil (40 g kg-1 TPH), 2 MAT. The concentrations of TPH in soils cultivated with Calendula officinalis, Callistephus chinensis, C. caudatus, and Tagetes sp. were also lower than that in the initial soil, 3 MAT. The concentrations of TPH in soils cultivated with Achillea filipendulina, Anthemis tinctoria, Tagetes erecta, Chrysanthemum coronarium, C. officinalis, C. chinensis, and C. caudatus were lower than that in the initial soil (90 g kg-1 TPH), 2 MAT. The concentrations of TPH in soils cultivated with T. erecta, A. tinctoria, Zinnia elegans, C. chinensis, C. caudatus, and Tagetes sp. were lower than that in the initial soil, 3 MAT. A. filipendulina and C. coronarium died at both 40 and 90 kg-1 TPH soils. These results suggest that the roots of Asteraceae plants degrade petroleum hydrocarbon in contaminated soil and C. chinensis and Z. elegans are more suitable for using TPH remediation. Plant survival and extensive root system are important factors for the remediation of TPH in contaminated soil.


Assuntos
Aster/química , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos/química , Petróleo/análise , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/química
3.
Physiol Plant ; 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29412473

RESUMO

Recycling of phosphorus (P) from P-containing metabolites is an adaptive strategy of plants to overcome soil P deficiency. This study was aimed at demonstrating differences in lipid remodelling between low-P-tolerant and -sensitive rice cultivars using lipidome profiling. The rice cultivars Akamai (low-P-tolerant) and Koshihikari (low-P-sensitive) were grown in a culture solution with [2 mg l-1 (+P)] or without (-P) phosphate for 21 and 28 days after transplantation. Upper and lower leaves were collected. Lipids were extracted from the leaves and their composition was analysed by liquid chromatography/mass spectrometry (LC-MS). Phospholipids, namely phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and phosphatidylinositol (PI), lysophosphatidylcholine (lysoPC), diacylglycerol (DAG), triacylglycerol (TAG) and glycolipids, namely sulfoquinovosyl diacylglycerol (SQDG), digalactosyldiacylglycerol (DGDG), monogalactosyldiacylglycerol (MGDG) and 1,2-diacyl-3-O-alpha-glucuronosyl glycerol (GlcADG), were detected. GlcADG level was higher in both cultivars grown in -P than in +P and the increase was larger in Akamai than in Koshihikari. DGDG, MGDG and SQDG levels were higher in Akamai grown in -P than in +P and the increase was larger in the upper leaves than in the lower leaves. PC, PE, PG and PI levels were lower in both cultivars grown in -P than in +P and the decrease was larger in the lower leaves than in the upper leaves and in Akamai than in Koshihikari. Akamai catabolised more phospholipids in older leaves and synthesised glycolipids in younger leaves. These results suggested that extensive phospholipid replacement with non-phosphorus glycolipids is a mechanism underlying low-P-tolerance in rice cultivars.

4.
J Exp Bot ; 69(3): 567-577, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29294038

RESUMO

Aluminum-sensitive rice (Oryza sativa L.) cultivars showed increased Al tolerance under dark conditions, because less Al accumulated in the root tips (1 cm) under dark than under light conditions. Under dark conditions, the root tip concentration of total sterols, which generally reduce plasma membrane permeabilization, was higher in the most Al-sensitive japonica cultivar, Koshihikari (Ko), than in the most Al-tolerant cultivar, Rikuu-132 (R132), but the phospholipid content did not differ between the two. The Al treatment increased the proportion of stigmasterol (which has no ability to reduce membrane permeabilization) out of total sterols similarly in both cultivars under light conditions, but it decreased more in Ko under dark conditions. The carotenoid content in the root tip of Al-treated Ko was significantly lower under dark than under light conditions, indicating that isopentenyl diphosphate transport from the cytosol to plastids was decreased under dark conditions. HMG2 and HMG3 (encoding the key sterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl CoA reductase) transcript levels in the root tips were enhanced under dark conditions. We suggest that the following mechanisms contribute to the increase in Al tolerance under dark conditions: inhibition of stigmasterol formation to retain membrane integrity; greater partitioning of isopentenyl diphosphate for sterol biosynthesis; and enhanced expression of HMGs to increase sterol biosynthesis.


Assuntos
Alumínio/metabolismo , Escuridão , Oryza/metabolismo , Fitosteróis/metabolismo , Membrana Celular/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Physiol Plant ; 160(1): 11-20, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27800617

RESUMO

High aluminum (Al) concentration in soil solution is the most important factor restricting plant growth in acidic soils. However, various plant species naturally grow in such soils. Generally, they are highly tolerant to Al, but organic acid exudation, the most common Al tolerance mechanism, cannot explain their tolerance. Lower phospholipid and higher sterol proportions in root plasma membrane enhance Al tolerance. Other cellular components, such as cell walls and phenolics, may also be involved in Al tolerance mechanisms. In this study, the relationships between these cellular components and the Al tolerance mechanisms in Melastoma malabathricum and Melaleuca cajuputi, both highly Al-tolerant species growing in strongly acidic soils, were investigated. Both species contained lower proportions of phospholipids and higher proportions of sterols in roots, respectively. Concentrations of phenolics in roots of both species were higher than that of rice; their phenolics could form chelates with Al. In these species, phenolic concentrations and composition were the same irrespective of the presence or absence of Al in the medium, suggesting that a higher concentration of phenolics is not a physiological response to Al but a constitutive characteristic. These characteristics of cellular components in roots may be cooperatively involved in their high Al tolerance.


Assuntos
Alumínio/toxicidade , Melastomataceae/efeitos dos fármacos , Melastomataceae/metabolismo , Fenóis/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Árvores/efeitos dos fármacos , Árvores/metabolismo
6.
J Exp Bot ; 66(3): 907-18, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25416794

RESUMO

Several studies have shown that differences in lipid composition and in the lipid biosynthetic pathway affect the aluminium (Al) tolerance of plants, but little is known about the molecular mechanisms underlying these differences. Phospholipids create a negative charge at the surface of the plasma membrane and enhance Al sensitivity as a result of the accumulation of positively charged Al(3+) ions. The phospholipids will be balanced by other electrically neutral lipids, such as sterols. In the present research, Al tolerance was compared among pea (Pisum sativum) genotypes. Compared with Al-tolerant genotypes, the Al-sensitive genotype accumulated more Al in the root tip, had a less intact plasma membrane, and showed a lower expression level of PsCYP51, which encodes obtusifoliol-14α-demethylase (OBT 14DM), a key sterol biosynthetic enzyme. The ratio of phospholipids to sterols was higher in the sensitive genotype than in the tolerant genotypes, suggesting that the sterol biosynthetic pathway plays an important role in Al tolerance. Consistent with this idea, a transgenic Arabidopsis thaliana line with knocked-down AtCYP51 expression showed an Al-sensitive phenotype. Uniconazole-P, an inhibitor of OBT 14DM, suppressed the Al tolerance of Al-tolerant genotypes of maize (Zea mays), sorghum (Sorghum bicolor), rice (Oryza sativa), wheat (Triticum aestivum), and triticale (×Triticosecale Wittmark cv. Currency). These results suggest that increased sterol content, regulated by CYP51, with concomitant lower phospholipid content in the root tip, results in lower negativity of the plasma membrane. This appears to be a common strategy for Al tolerance among several plant species.


Assuntos
Alumínio/metabolismo , Membrana Celular/metabolismo , Magnoliopsida/genética , Fosfolipídeos/metabolismo , Esterol 14-Desmetilase/genética , Esterol 14-Desmetilase/metabolismo , Esteróis/metabolismo , Clonagem Molecular , Expressão Gênica , Magnoliopsida/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Poluentes do Solo/metabolismo
7.
Metabolites ; 4(3): 599-611, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25032978

RESUMO

Root exudates improve the nutrient acquisition of plants and affect rhizosphere microbial communities. The plant nutrient status affects the composition of root exudates. The purpose of this study was to examine common bean (Phaseolus vulgaris L.) root exudates under phosphorus (P) deficiency using a metabolite profiling technique. Common bean plants were grown in a culture solution at P concentrations of 0 (P0), 1 (P1) and 8 (P8) mg P L-1 for 1, 10 and 20 days after transplanting (DAT). Root exudates were collected, and their metabolites were determined by capillary electrophoresis time-of-flight mass spectrometry (CE-TOF MS). The shoot P concentration and dry weight of common bean plants grown at P0 were lower than those grown at P8. One hundred and fifty-nine, 203 and 212 metabolites were identified in the root exudates, and 16% (26/159), 13% (26/203) and 9% (20/212) of metabolites showed a P0/P8 ratio higher than 2.0 at 1, 10 and 20 DAT, respectively. The relative peak areas of several metabolites, including organic acids and amino acids, in root exudates were higher at P0 than at P8. These results suggest that more than 10% of primary and secondary metabolites are induced to exude from roots of common bean by P deficiency.

8.
J Plant Physiol ; 171(2): 9-15, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24331414

RESUMO

The negative charge at the root surface is mainly derived from the phosphate group of phospholipids in plasma membranes (PMs) and the carboxyl group of pectins in cell walls, which are usually neutralized by calcium (Ca) ions contributing to maintain the root integrity. The major toxic effect of aluminum (Al) in plants is the inhibition of root elongation due to Al binding tightly to these negative sites in exchange for Ca. Because phospholipid and pectin concentrations decrease in roots of some plant species under phosphorus (P)-limiting conditions, we hypothesized that rice (Oryza sativa L.) seedlings grown under P-limiting conditions would demonstrate enhanced Al tolerance because of their fewer sites on their roots. For pretreatment, rice seedlings were grown in a culture solution with (+P) or without (-P) P. Thereafter, the seedlings were transferred to a solution with or without Al, and the lipid, pectin, hemicellulose, and mineral concentrations as well as Al tolerance were then determined. Furthermore, the low-Ca tolerance of P-pretreated seedlings was investigated under different pH conditions. The concentrations of phospholipids and pectins in the roots of rice receiving -P pretreatment were lower than those receiving +P pretreatment. As expected, seedlings receiving the -P pretreatment showed enhanced Al tolerance, accompanied by the decrease in Al accumulation in their roots and shoots. This low P-induced enhanced Al tolerance was not explained by enhanced antioxidant activities or organic acid secretion from roots but by the decrease in phospholipid and pectin concentrations in the roots. In addition, low-Ca tolerance of the roots was enhanced by the -P pretreatment under low pH conditions. This low P-induced enhancement of low-Ca tolerance may be related to the lower Ca requirement to maintain PM and cell wall structures in roots of rice with fewer phospholipids and pectins.


Assuntos
Alumínio/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Oryza/metabolismo , Fósforo/metabolismo , Cálcio/metabolismo
9.
Plant Physiol ; 163(1): 180-92, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23839867

RESUMO

Al³âº and H⁺ toxicities predicted to occur at moderately acidic conditions (pH [water] = 5-5.5) in low-Ca soils were characterized by the combined approaches of computational modeling of electrostatic interactions of ions at the root plasma membrane (PM) surface and molecular/physiological analyses in Arabidopsis (Arabidopsis thaliana). Root growth inhibition in known hypersensitive mutants was correlated with computed {Al³âº} at the PM surface ({Al³âº}(PM)); inhibition was alleviated by increased Ca, which also reduced {Al³âº}(PM) and correlated with cellular Al responses based on expression analysis of genes that are markers for Al stress. The Al-inducible Al tolerance genes ALUMINUM-ACTIVATED MALATE TRANSPORTER1 and ALUMINUM SENSITIVE3 were induced by levels of {Al³âº}(PM) too low to inhibit root growth in tolerant genotypes, indicating that protective responses are triggered when {Al³âº}(PM) was below levels that can initiate injury. Modeling of the H⁺ sensitivity of the SENSITIVE TO PROTON RHIZOTOXICITY1 knockout mutant identified a Ca alleviation mechanism of H⁺ rhizotoxicity, possibly involving stabilization of the cell wall. The phosphatidate phosphohydrolase1 (pah1) pah2 double mutant showed enhanced Al susceptibility under low-P conditions, where greater levels of negatively charged phospholipids in the PM occur, which increases {Al³âº}(PM) through increased PM surface negativity compared with wild-type plants. Finally, we found that the nonalkalinizing Ca fertilizer gypsum improved the tolerance of the sensitive genotypes in moderately acidic soils. These findings fit our modeling predictions that root toxicity to Al³âº and H⁺ in moderately acidic soils involves interactions between both toxic ions in relation to Ca alleviation.


Assuntos
Alumínio/toxicidade , Arabidopsis/fisiologia , Hidrogênio/toxicidade , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cálcio/farmacologia , Membrana Celular/metabolismo , Técnicas de Inativação de Genes , Concentração de Íons de Hidrogênio , Modelos Genéticos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Solo/química , Estresse Fisiológico
10.
Physiol Plant ; 135(1): 73-83, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19121101

RESUMO

We investigated variations in aluminum (Al) tolerance among rice plants, using ancestor cultivars from the family line of the Al-tolerant and widely cultivated Japonica cultivar, Sasanishiki. The cultivar Rikuu-20 was Al sensitive, whereas a closely related cultivar that is a descendant of Rikuu-20, Rikuu-132, was Al tolerant. These two cultivars were compared to determine mechanisms underlying variations in Al tolerance. The sensitive cultivar Rikuu-20 showed increased permeability of the plasma membrane (PM) and greater Al uptake within 1 h of Al treatment. This could not be explained by organic acid release. Lipid composition of the PM differed between these cultivars, and may account for the difference in Al tolerance. The tolerant cultivar Rikuu-132 had a lower ratio of phospholipids to Delta(5)-sterols than the sensitive cultivar Rikuu-20, suggesting that the PM of Rikuu-132 is less negatively charged and less permeabilized than that of Rikuu-20. We used inhibitors of Delta(5)-sterol synthesis to alter the ratio of phospholipids to Delta(5)-sterols in both cultivars. These inhibitors reduced Al tolerance in Rikuu-132 and its Al-tolerant ancestor cultivars Kamenoo and Kyoku. In addition, Rikuu-132 showed a similar level of Al sensitivity when the ratio of phospholipids to Delta(5)-sterols was increased to match that of Rikuu-20 after treatment with uniconazole-P, an inhibitor of obtusifoliol-14alpha-demethylase. These results indicate that PM lipid composition is a factor underlying variations in Al tolerance among rice cultivars.


Assuntos
Alumínio/farmacologia , Lipídeos de Membrana/metabolismo , Meristema/efeitos dos fármacos , Oryza/efeitos dos fármacos , Esteróis/metabolismo , Membrana Celular/efeitos dos fármacos , Ácido Cítrico/metabolismo , Malatos/metabolismo , Oryza/metabolismo , Esteróis/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...