Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13094, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908043

RESUMO

In the extensive search for new physics, the precise measurement of the Higgs boson continues to play an important role. To this end, machine learning techniques have been recently applied to processes like the Higgs production via vector-boson fusion. In this paper, we propose to use algorithms for learning to rank, i.e., to rank events into a sorting order, first signal, then background, instead of algorithms for the classification into two classes, for this task. The fact that training is then performed on pairwise comparisons of signal and background events can effectively increase the amount of training data due to the quadratic number of possible combinations. This makes it robust to unbalanced data set scenarios and can improve the overall performance compared to pointwise models like the state-of-the-art boosted decision tree approach. In this work we compare our pairwise neural network algorithm, which is a combination of a convolutional neural network and the DirectRanker, with convolutional neural networks, multilayer perceptrons or boosted decision trees, which are commonly used algorithms in multiple Higgs production channels. Furthermore, we use so-called transfer learning techniques to improve overall performance on different data types.

2.
Science ; 375(6585): 1165-1169, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35271342

RESUMO

Frequency multiplication is a process in modern electronics in which harmonics of the input frequency are generated in nonlinear electronic circuits. Devices based on the propagation and interaction of spin waves are a promising alternative to conventional electronics. The characteristic frequency of these excitations is in the gigahertz (GHz) range and devices are not readily interfaced with conventional electronics. Here, we locally probe the magnetic excitations in a soft magnetic material by optical methods and show that megahertz-range excitation frequencies cause switching effects on the micrometer scale, leading to phase-locked spin-wave emission in the GHz range. Indeed, the frequency multiplication process inside the magnetic medium covers six octaves and opens exciting perspectives for spintronic applications, such as all-magnetic mixers or on-chip GHz sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...