Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 172(9): 2406-18, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25572435

RESUMO

BACKGROUND AND PURPOSE: Cannabinoid (CB) ligands have been demonstrated to have utility as novel therapeutic agents for the treatment of pain, metabolic conditions and gastrointestinal (GI) disorders. However, many of these ligands are centrally active, which limits their usefulness. Here, we examine a unique novel covalent CB receptor ligand, AM841, to assess its potential for use in physiological and pathophysiological in vivo studies. EXPERIMENTAL APPROACH: The covalent nature of AM841 was determined in vitro using electrophysiological and receptor internalization studies on isolated cultured hippocampal neurons. Mouse models were used for behavioural analysis of analgesia, hypothermia and hypolocomotion. The motility of the small and large intestine was assessed in vivo under normal conditions and after acute stress. The brain penetration of AM841 was also determined. KEY RESULTS: AM841 behaved as an irreversible CB1 receptor agonist in vitro. AM841 potently reduced GI motility through an action on CB1 receptors in the small and large intestine under physiological conditions. AM841 was even more potent under conditions of acute stress and was shown to normalize accelerated GI motility under these conditions. This compound behaved as a peripherally restricted ligand, showing very little brain penetration and no characteristic centrally mediated CB1 receptor-mediated effects (analgesia, hypothermia or hypolocomotion). CONCLUSIONS AND IMPLICATIONS: AM841, a novel peripherally restricted covalent CB1 receptor ligand that was shown to be remarkably potent, represents a new class of potential therapeutic agents for the treatment of functional GI disorders.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Dronabinol/análogos & derivados , Sistema Nervoso Entérico/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Receptor CB1 de Canabinoide/agonistas , Estresse Psicológico/tratamento farmacológico , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiopatologia , Região CA2 Hipocampal/efeitos dos fármacos , Região CA2 Hipocampal/metabolismo , Região CA2 Hipocampal/fisiopatologia , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/metabolismo , Região CA3 Hipocampal/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Dronabinol/farmacologia , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/fisiopatologia , Hipotermia/tratamento farmacológico , Hipotermia/metabolismo , Hipotermia/fisiopatologia , Mucosa Intestinal/metabolismo , Intestinos/inervação , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Dor/tratamento farmacológico , Dor/metabolismo , Dor/fisiopatologia , Limiar da Dor/efeitos dos fármacos , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Fatores de Tempo
2.
Br J Pharmacol ; 164(6): 1672-83, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21564090

RESUMO

BACKGROUND AND PURPOSE: Depolarization-induced suppression of inhibition (DSI) and excitation (DSE) are two forms of cannabinoid CB(1) receptor-mediated inhibition of synaptic transmission, whose durations are regulated by endocannabinoid (eCB) degradation. We have recently shown that in cultured hippocampal neurons monoacylglycerol lipase (MGL) controls the duration of DSE, while DSI duration is determined by both MGL and COX-2. This latter result suggests that DSE might be attenuated, and excitatory transmission enhanced, during inflammation and in other settings where COX-2 expression is up-regulated. EXPERIMENTAL APPROACH: To investigate whether it is possible to control the duration of eCB-mediated synaptic plasticity by varied expression of eCB-degrading enzymes, we transfected excitatory autaptic hippocampal neurons with putative 2-AG metabolizing enzymes: COX-2, fatty acid amide hydrolase (FAAH), α/ß hydrolase domain 6 (ABHD6), α/ß hydrolase domain 12 (ABHD12) or MGL. KEY RESULTS: We found that overexpression of either COX-2 or FAAH shortens the duration of DSE while ABHD6 or ABHD12 do not. In contrast, genetic deletion (MGL(-/-)) and overexpression of MGL both radically altered eCB-mediated synaptic plasticity. CONCLUSIONS AND IMPLICATIONS: We conclude that both FAAH and COX-2 can be trafficked to neuronal sites where they are able to degrade eCBs to modulate DSE duration and, by extension, net endocannabinoid signalling at a given synapse. The results for COX-2, which is often up-regulated under pathological conditions, are of particular note in that they offer a mechanism by which up-regulated COX-2 may promote neuronal excitation by suppressing DSE while enhancing conversion of 2-AG to PGE(2) -glycerol ester under pathological conditions.


Assuntos
Amidoidrolases/fisiologia , Ciclo-Oxigenase 2/fisiologia , Monoacilglicerol Lipases/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Animais , Células Cultivadas , Hipocampo/fisiologia , Camundongos , Camundongos Knockout
3.
Mol Genet Metab ; 72(1): 45-53, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11161828

RESUMO

cAMP-dependent protein kinase (cAK) regulates the activity of several membrane-bound ion channels and carriers. The role of cAK in regulating the transport of osmoprotective amino acids in the distal tubule is unknown. We examined the regulation of Na(+)- and Cl(-)-dependent proline transport in MDCK cells expressing a mutant murine regulatory subunit (RIalpha(AB)) of cAK. For this purpose, MDCK cells were transfected with an expression vector encoding RIalpha(AB) driven by the metallothionein 1 promoter together with neomycin-resistance (NEO) gene. Stable G418-resistant colonies were isolated that expressed RIalpha(AB) as demonstrated by Northern hybridization analysis using a cDNA probe for RIalpha and cAK assay that showed decreased enzyme activity. A clone constitutively expressing high levels of RIalpha(AB) (M(AB)) in a Zn-independent manner and a control clone transfected with the NEO gene alone (M(neo)) were selected for transport studies. We examined the effect of the cAMP-stimulating agents forskolin (F) and IBMX on NaCl-dependent uptake of [(3)H]proline by confluent monolayers of transfected MDCK cells. While F/IBMX-induced mean inhibition of proline transport in M(neo) cells was 48 and 45% at 5 and 15 min, respectively, inhibition of proline uptake in M(AB) cells was 9% (5 min) and 0% (15 min). These data demonstrate that the inhibition of NaCl-linked proline transport in response to elevated cAMP is reversed in MDCK clones that express mutant cAK and provide evidence that cAK mediates the modulatory action of cAMP on proline transport. cAK may play an important role in controlling transport of proline and other osmoprotective amino acids in the renal tubule.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/biossíntese , Prolina/metabolismo , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Transporte Biológico , Northern Blotting , Linhagem Celular , Colforsina/farmacologia , AMP Cíclico/metabolismo , DNA Complementar/metabolismo , Cães , Resistência a Medicamentos/genética , Vetores Genéticos , Túbulos Renais/metabolismo , Metalotioneína/genética , Camundongos , Mutação , Neomicina/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Prolina/farmacocinética , Inibidores da Síntese de Proteínas/farmacologia , Cloreto de Sódio/farmacologia , Fatores de Tempo , Transfecção
4.
Biosci Rep ; 21(5): 613-26, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12168769

RESUMO

Very little is known about the cellular mechanisms controlling renal tubular amino acid transport. cAMP-dependent protein kinase (cAK) modulates the activity of several ion channels and pumps in biological membranes. The direct influence of cAK on transmembrane amino acid transport has not been investigated. We studied the effect the cAKmediated phosphorylation on Na+ and Cl(-)-linked proline transport across the rat renal brush border membrane (BBM). cAK bioassay and Western hybridization analysis using cAK subunit-specific antibodies demonstrated the presence of the enzyme in the BBM. Brush border membrane vesicles (BBMV) were phosphorylated using the "hyposmotic shock" technique. cAMP, by activating endogenous cAK,and exogenous, highly purified catalytic subunit of cAK inhibited NaCl-dependent proline transport by phosphorylated, lysed/resealed BBMV compared with control vesicles. The cAK-mediated inhibition of proline uptake was completely abolished when phosphorylation at the cytoplasmic (inner side) of the membrane was prevented by isosmotic, rather than hyposmotic, phosphorylation. The cAK-induced inhibition of proline transport was reversed by the specific cAK inhibitor peptide, PK1. These data suggest that cAMP-dependent protein kinase-mediated phosphorylation modulates Na+(-) and Cl(-)-linked proline transport across the tubular luminal membrane.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Túbulos Renais/ultraestrutura , Prolina/metabolismo , Animais , Transporte Biológico Ativo , Domínio Catalítico , Cloretos/metabolismo , AMP Cíclico/farmacologia , Masculino , Microvilosidades/metabolismo , Fosforilação , Coelhos , Ratos , Ratos Sprague-Dawley , Sódio/metabolismo
5.
Cell Tissue Res ; 299(2): 225-36, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10741463

RESUMO

High-affinity tyrosine kinase A (trkA) neurotrophin receptors on neurons and nonneuronal cells elicit differentiation or survival functions in response to nerve growth factor (NGF), whereas the low-affinity neurotrophin (p75) receptor modulates trkA activity or can independently cause apoptosis or NFkappaB-mediated survival functions. We examined dental tissues for the presence of trkA-like immunoreactivity (trkA-IR), to determine which nonneuronal cell types express it in normal compared with inflamed teeth and how the trkA-positive cells relate to those expressing the p75 receptor and/or NGF. Normal and injured rat molars (dentin cavity for 4 h, 16-24 h, 3 days, 16 days, or 5 weeks) were immunoreacted using the ABC detection system for two anti-trkA antibodies (sTA, Santa Cruz Biotechnology; rTA, L. Reichardt) and antibodies against p75 and NGF, all of which also stained pulpal nerve fibers. We report that, when using the sTA antibody (recognizing the intracellular carboxy terminal), nonneuronal trkA-IR was found in odontoblasts of normal teeth and also in invading polymorphonuclear leukocytes (PMNs) and reparative odontoblasts after injury. When using rTA (recognizing the extracellular domain of the receptor), nonneuronal trkA-IR was only found in odontoblasts. Odontoblasts also had NGF-IR but did not label for NGF mRNA. The lack of odontoblast NGF mRNA suggests that NGF is passed from fibroblasts to the adjacent odontoblasts, where it is picked up by receptor-mediated mechanisms for regulation of odontoblast function. Tooth injury disrupts this system such that trkA-IR decreases in injured odontoblasts, p75 decreases in fibroblasts, and NGF is upregulated by fibroblasts and accumulates in the injured pulp and surviving odontoblasts. Pulpal NGF may contribute to chemoattraction for the invading leukocytes or their sTA-IR may have been induced in response to pulpal NGF. Thus, tooth pulp has a different distribution of nonneuronal NGF and its paracrine receptors during inflammation compared with normal conditions.


Assuntos
Polpa Dentária/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Odontoblastos/metabolismo , Receptor de Fator de Crescimento Neural/biossíntese , Receptor trkA/biossíntese , Cicatrização , Animais , Comunicação Celular , Quimiotaxia de Leucócito , Polpa Dentária/lesões , Masculino , Dente Molar , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neutrófilos/imunologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor de Fator de Crescimento Neural/genética , Receptor trkA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...