Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 813461, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369495

RESUMO

In 2016, the United States Department of Agriculture (USDA) Food Safety and Inspection Service (FSIS) established guidelines which modified the Buffered Peptone Water (BPW) rinsate material to include additional compounds that would better neutralize residual processing aids and allow for better recovery of sublethal injured Salmonella spp. cells. While the added compounds improved the recovery of Salmonella spp., specific data to understand how the new rinse agent, neutralizing Buffered Peptone Water (nBPW), impacts the recovery of other microorganisms such as Campylobacter spp. and indicator microorganisms are lacking. Therefore, this study evaluated the impact of rinse solutions (BPW or nBPW) used in Whole Bird Carcass rinsate (WBCR) collections on the subsequent microbiome and downstream culturing methodologies. Carcasses exiting a finishing chiller were rinsed in 400 ml of BPW or nBPW. Resulting rinsates were analyzed for Enterobacteriaceae (EB), Salmonella, and Campylobacter spp. prevalence and total aerobic bacteria (APC) and EB load. The 16S rDNA of the rinsates and the matrices collected from applied microbiological analyses were sequenced on an Illumina MiSeq®. Log10-transformed counts were analyzed in JMP 15 using ANOVA with means separated using Tukey's HSD, and prevalence data were analyzed using Pearson's χ2 (P ≤ 0.05). Diversity and microbiota compositions (ANCOM) were analyzed in QIIME 2.2019.7 (P ≤ 0.05; Q ≤ 0.05). There was an effect of rinsate type on the APC load and Campylobacter spp. prevalence (P < 0.05), but not the quantity or prevalence of EB or Salmonella spp. prevalence. There were differences between the microbial diversity of the two rinsate types and downstream analyses (P < 0.05). Additionally, several taxa, including Streptococcus, Lactobacillus, Aeromonas, Acinetobacter, Clostridium, Enterococcaceae, Burkholderiaceae, and Staphylococcaceae, were differentially abundant in paired populations. Therefore, the rinse buffer used in a WBCR collection causes proportional shifts in the microbiota, which can lead to differences in results obtained from cultured microbial populations.

2.
Front Microbiol ; 10: 972, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214127

RESUMO

Poultry processing systems are a complex network of equipment and automation systems that require a proactive approach to monitoring in order to protect the food supply. Process oversight requires the use of multi-hurdle intervention systems to ensure that any undesirable microorganisms are reduced or eliminated by the time the carcasses are processed into final products. In the present study, whole bird carcass rinses (WBCR) collected at the post-scalder and post-picker locations from three different poultry processing facilities (Plant A: mid-weight broiler processing, B: large-weight broiler processing, C: young broiler (Cornish) processing) were subjected to next generation sequencing (NGS) and microbial quantification using direct plating methods to assess the microbial populations present during these stages of the poultry process. The quantification of aerobic plate counts (APC) and Enterobacteriaceae (EB) demonstrated that reductions for these microbial classes were not consistent between the two sampling locations for all facilities, but did not provide a clear picture of what microorganism(s) may be affecting those shifts. With the utilization of NGS, a more complete characterization of the microbial communities present including microorganisms that would not have been identified with the employed direct plating methodologies were identified. Although the foodborne pathogens typically associated with raw poultry, Salmonella and Campylobacter, were not identified, sequence analysis performed by Quantitative Insights of Microbiology Ecology (QIIME) indicated shifts of Erwinia, Serratia, and Arcobacter, which are microorganisms closely related to Salmonella and Campylobacter. Additionally, the presence of Chryseobacterium and Pseudomonas at both sampling locations and at all three facilities provides evidence that these microorganisms could potentially be utilized to assess the performance of multi-hurdle intervention systems.

3.
J Food Prot ; 77(11): 1889-96, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25364922

RESUMO

Inoculated beef trim containing a cocktail of green fluorescent protein-marked Escherichia coli biotype I cultures as surrogates for E. coli O157:H7 was introduced into two large, commercial grinding facilities capable of producing 180,000 kg of ground product in 1 day. Three repetitions were performed over 3 days. Sampling occurred at three different points within the process: postprimary grind, postsecondary grind-blender, and postpackaging. Resulting data show that, as the inoculated meat passes through the system, the presence of the marked surrogate quickly diminishes. The depletion rates are directly related to the amount of product in kilograms (represented by time) that has passed through the system, but these rates vary with each step of the process. The primary grinder appears to rid itself of the contaminant the most quickly; in all repetitions, the contaminant was not detected within 5 min of introduction of the contaminated combo bin into the system, which in all cases, was prior to the introduction of a second combo bin and within 1,800 kg of product. After the blending step and subsequent secondary grinding, the contaminant was detected in product produced from both the parent combo and the combo bin added directly after the parent combo bin; however, for those days on which three combo bins (approximately 2,700 kg) were available for sampling, the contaminant was not detected from product representing the third combo bin. Similarly, at the packaging step, the contaminant was detected in the product produced by both the parent and second combo bins; however, on those days when a third combo bin was available for sampling (repetitions 2 and 3), the contaminant was not detected from product produced from the third combo bin.


Assuntos
Escherichia coli/isolamento & purificação , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos/instrumentação , Manipulação de Alimentos/métodos , Carne/microbiologia , Animais , Bovinos , Contagem de Colônia Microbiana , Escherichia coli/genética , Escherichia coli/metabolismo , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Carne/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA