Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(6)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37376207

RESUMO

Spectinamides 1599 and 1810 are lead spectinamide compounds currently under preclinical development to treat multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. These compounds have previously been tested at various combinations of dose level, dosing frequency, and route of administration in mouse models of Mycobacterium tuberculosis (Mtb) infection and in healthy animals. Physiologically based pharmacokinetic (PBPK) modeling allows the prediction of the pharmacokinetics of candidate drugs in organs/tissues of interest and extrapolation of their disposition across different species. Here, we have built, qualified, and refined a minimalistic PBPK model that can describe and predict the pharmacokinetics of spectinamides in various tissues, especially those relevant to Mtb infection. The model was expanded and qualified for multiple dose levels, dosing regimens, routes of administration, and various species. The model predictions in mice (healthy and infected) and rats were in reasonable agreement with experimental data, and all predicted AUCs in plasma and tissues met the two-fold acceptance criteria relative to observations. To further explore the distribution of spectinamide 1599 within granuloma substructures as encountered in tuberculosis, we utilized the Simcyp granuloma model combined with model predictions in our PBPK model. Simulation results suggest substantial exposure in all lesion substructures, with particularly high exposure in the rim area and macrophages. The developed model may be leveraged as an effective tool in identifying optimal dose levels and dosing regimens of spectinamides for further preclinical and clinical development.

2.
J Med Chem ; 65(6): 4534-4564, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35261239

RESUMO

Recent mouse knockout studies identified adapter protein-2-associated kinase 1 (AAK1) as a viable target for treating neuropathic pain. BMS-986176/LX-9211 (4), as a highly selective, CNS-penetrable, and potent AAK1 inhibitor, has advanced into phase II human trials. On exploring the structure-activity relationship (SAR) around this biaryl alkyl ether chemotype, several additional compounds were found to be highly selective and potent AAK1 inhibitors with good druglike properties. Among these, compounds 43 and 58 showed very good efficacy in two neuropathic pain rat models and had excellent CNS penetration and spinal cord target engagement. Both compounds also exhibited favorable physicochemical and oral pharmacokinetic (PK) properties. Compound 58, a central pyridine isomer of BMS-986176/LX-9211 (4), was 4-fold more potent than 4 in vitro and showed lower plasma exposure needed to achieve similar efficacy compared to 4 in the CCI rat model. However, both 43 and 58 showed an inferior preclinical toxicity profile compared to 4.


Assuntos
Anestésicos Gerais , Neuralgia , Animais , Éteres/uso terapêutico , Camundongos , Neuralgia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ratos , Medula Espinal , Relação Estrutura-Atividade
3.
J Med Chem ; 65(6): 4457-4480, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35257579

RESUMO

Recent mouse knockout studies identified adapter protein-2 associated kinase 1 (AAK1) as a viable target for treating neuropathic pain. Potent small-molecule inhibitors of AAK1 have been identified and show efficacy in various rodent pain models. (S)-1-((2',6-Bis(difluoromethyl)-[2,4'-bipyridin]-5-yl)oxy)-2,4-dimethylpentan-2-amine (BMS-986176/LX-9211) (34) was identified as a highly selective, CNS penetrant, potent AAK1 inhibitor from a novel class of bi(hetero)aryl ethers. BMS-986176/LX9211 (34) showed excellent efficacy in two rodent neuropathic pain models and excellent central nervous system (CNS) penetration and target engagement at the spinal cord with an average brain to plasma ratio of 20 in rat. The compound exhibited favorable physicochemical and pharmacokinetic properties, had an acceptable preclinical toxicity profile, and was chosen for clinical trials. BMS-986176/LX9211 (34) completed phase I trials with good human pharmacokinetics and minimum adverse events and is currently in phase II clinical trials for diabetic peripheral neuropathic pain (ClinicalTrials.gov identifier: NCT04455633) and postherpetic neuralgia (ClinicalTrials.gov identifier: NCT04662281).


Assuntos
Aminas , Neuralgia , Animais , Encéfalo , Camundongos , Neuralgia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ratos , Medula Espinal
4.
ACS Infect Dis ; 7(10): 2850-2863, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34546724

RESUMO

The lengthy treatment time for tuberculosis (TB) is a primary cause for the emergence of multidrug resistant tuberculosis (MDR-TB). One approach to improve TB therapy is to develop an inhalational TB therapy that when administered in combination with oral TB drugs eases and shortens treatment. Spectinamides are new semisynthetic analogues of spectinomycin with excellent activity against Mycobacterium tuberculosis (Mtb), including MDR and XDR Mtb strains. Spectinamide-1599 was chosen as a promising candidate for development of inhalational therapy. Using the murine TB model and intrapulmonary aerosol delivery of spectinamide-1599, we characterized the pharmacokinetics and efficacy of this therapy in BALB/c and C3HeB/FeJ mice infected with the Mtb Erdman strain. As expected, spectinamide-1599 exhibited dose-dependent exposure in plasma, lungs, and ELF, but exposure ratios between lung and plasma were 12-40 times higher for intrapulmonary compared to intravenous or subcutaneous administration. In chronically infected BALB/c mice, low doses (10 mg/kg) of spectinamide-1599 when administered thrice weekly for two months provide efficacy similar to that of higher doses (50-100 mg/kg) after one month of therapy. In the C3HeB/FeJ TB model, intrapulmonary aerosol delivery of spectinamide-1599 (50 mg/kg) or oral pyrazinamide (150 mg/kg) had limited or no efficacy in monotherapy, but when both drugs were given in combination, a synergistic effect with superior bacterial reduction of >1.8 log10 CFU was observed. Throughout the up to eight-week treatment period, intrapulmonary therapy was well-tolerated without any overt toxicity. Overall, these results strongly support the further development of intrapulmonary spectinamide-1599 as a combination partner for anti-TB therapy.


Assuntos
Espectinomicina , Tuberculose , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Pirazinamida , Espectinomicina/farmacologia , Tuberculose/tratamento farmacológico
5.
Antimicrob Agents Chemother ; 65(11): e0174420, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34424046

RESUMO

Despite decades of research, tuberculosis remains a leading cause of death from a single infectious agent. Spectinamides are a promising novel class of antituberculosis agents, and the lead spectinamide 1810 has demonstrated excellent efficacy, safety, and drug-like properties in numerous in vitro and in vivo assessments in mouse models of tuberculosis. In the current dose ranging and dose fractionation study, we used 29 different combinations of dose level and dosing frequency to characterize the exposure-response relationship for spectinamide 1810 in a mouse model of Mycobacterium tuberculosis infection and in healthy animals. The obtained data on 1810 plasma concentrations and counts of CFU in lungs were analyzed using a population pharmacokinetic/pharmacodynamic (PK/PD) approach as well as classical anti-infective PK/PD indices. The analysis results indicate that there was no difference in the PK of 1810 in infected compared to healthy, uninfected animals. The PK/PD index analysis showed that bacterial killing of 1810 in mice was best predicted by the ratio of maximum free drug concentration to MIC (fCmax/MIC) and the ratio of the area under the free concentration-time curve to the MIC (fAUC/MIC) rather than the cumulative percentage of time that the free drug concentration is above the MIC (f%TMIC). A novel PK/PD model with consideration of postantibiotic effect could adequately describe the exposure-response relationship for 1810 and supports the notion that the in vitro observed postantibiotic effect of this spectinamide also translates to the in vivo situation in mice. The obtained results and pharmacometric model for the exposure-response relationship of 1810 provide a rational basis for dose selection in future efficacy studies of this compound against M. tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antibacterianos , Antituberculosos/farmacologia , Modelos Animais de Doenças , Camundongos , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico
6.
ACS Appl Mater Interfaces ; 11(42): 38537-38554, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31553876

RESUMO

Cellular senescence is one of the prevailing issues in cancer therapeutics that promotes cancer relapse, chemoresistance, and recurrence. Patients undergoing persistent chemotherapy often develop drug-induced senescence. Docetaxel, an FDA-approved treatment for prostate cancer, is known to induce cellular senescence which often limits the overall survival of patients. Strategic therapies that counter the cellular and drug-induced senescence are an unmet clinical need. Towards this an effort was made to develop a novel therapeutic strategy that targets and removes senescent cells from the tumors, we developed a nanoformulation of tannic acid-docetaxel self-assemblies (DSAs). The construction of DSAs was confirmed through particle size measurements, spectroscopy, thermal, and biocompatibility studies. This formulation exhibited enhanced in vitro therapeutic activity in various biological functional assays with respect to native docetaxel treatments. Microarray and immunoblot analysis results demonstrated that DSAs exposure selectively deregulated senescence associated TGFßR1/FOXO1/p21 signaling. Decrease in ß-galactosidase staining further suggested reversion of drug-induced senescence after DSAs exposure. Additionally, DSAs induced profound cell death by activation of apoptotic signaling through bypassing senescence. Furthermore, in vivo and ex vivo imaging analysis demonstrated the tumor targeting behavior of DSAs in mice bearing PC-3 xenograft tumors. The antisenescence and anticancer activity of DSAs was further shown in vivo by inhibiting TGFßR1 proteins and regressing tumor growth through apoptotic induction in the PC-3 xenograft mouse model. Overall, DSAs exhibited such advanced features due to a natural compound in the formulation as a matrix/binder for docetaxel. Overall, DSAs showed superior tumor targeting and improved cellular internalization, promoting docetaxel efficacy. These findings may have great implications in prostate cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Senescência Celular/efeitos dos fármacos , Docetaxel/química , Nanoestruturas/química , Polifenóis/química , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Proteína Forkhead Box O1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais/efeitos dos fármacos , Taninos/química , Transplante Heterólogo
7.
Pharm Dev Technol ; 24(8): 1038-1043, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31134840

RESUMO

Background: Clindamycin's bitter taste and odor is known to affect treatment adherence in children. Recently, a formulation of clindamycin HCl complexed with ion exchange resin IRP 69 was shown to mask the bitter taste. Because of the potential benefit of this formulation for children, a pilot study using a porcine model was conducted to evaluate its relative bioavailability. Methods: A randomized two-way crossover study design using six (n = 6) healthy male piglets 10-12 kg was used to evaluate the absorption profiles and pharmacokinetic parameters of clindamycin from the resinate complex formulation (Test) compared to a commercialized reference suspension. A dose of 15 mg/kg was administered orally by gastric gavage to each piglet followed by repeated blood sampling over 12 h. A wash-out period of 48 h occurred between treatments. Plasma concentration vs. time data was analyzed by non-compartmental analysis. Results: The mean relative bioavailability of clindamycin from the resinate formulation was 78.8%. A two-tailed, paired Student t test yielded a p < 0.05 for AUC∞ and Tmax parameters. A two one-sided test (TOST) suggested a difference in AUC∞ and Cmax for the Test formulation compared to the reference formulation according to the FDA's criteria for bioequivalence. Conclusion: The bioavailability of clindamycin from this novel oral formulation supports continued evaluation of the drug in humans for potential pediatric applications.


Assuntos
Clindamicina/farmacocinética , Resinas de Troca Iônica/farmacocinética , Suspensões/farmacocinética , Paladar/efeitos dos fármacos , Administração Oral , Animais , Antibacterianos/farmacocinética , Área Sob a Curva , Disponibilidade Biológica , Química Farmacêutica/métodos , Estudos Cross-Over , Meia-Vida , Masculino , Projetos Piloto , Suínos , Equivalência Terapêutica
8.
Tuberculosis (Edinb) ; 114: 119-122, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711150

RESUMO

Spectinamides are a novel series of spectinomycin analogs being developed for the treatment of tuberculosis. Intrapulmonary aerosol (IPA) administration of lead spectinamide 1599 has previously been shown to be more efficacious than subcutaneous (SC) administration at comparable doses. The objective of the current study was to characterize the disposition of 1599 in plasma and lungs in mice in order to provide a potential rationale for the observed efficacy differences. 200 mg/kg of 1599 was administered to healthy BALB/c mice by SC injection or by IPA delivery. Plasma and major organs were collected at specified time points until 8 h after dosing. Drug concentrations were measured by LC-MS/MS and analyzed by noncompartmental pharmacokinetic analysis. 1599 demonstrated rapid absorption into plasma after IPA and SC administration, resulting in very similar plasma exposure for both routes. In contrast, drug exposure in the lungs was 48 times higher following IPA as compared to SC administration, which is highly desirable as the lungs are the main site of infection in pulmonary TB. The higher local exposure in the lungs is likely the basis for the increased efficacy after IPA compared to SC administration. Overall, this study supports the pulmonary route as a potential pathway for the treatment of tuberculosis with 1599.


Assuntos
Antituberculosos/farmacocinética , Espectinomicina/análogos & derivados , Tuberculose/metabolismo , Administração por Inalação , Animais , Antituberculosos/administração & dosagem , Disponibilidade Biológica , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Injeções Subcutâneas , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Espectinomicina/administração & dosagem , Espectinomicina/farmacocinética , Tuberculose/tratamento farmacológico
10.
J Colloid Interface Sci ; 535: 133-148, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30292104

RESUMO

Paclitaxel (PTX) is a gold standard chemotherapeutic agent for breast, ovarian, pancreatic and non-small cell lung carcinoma. However, in clinical use PTX can have adverse side effects or inadequate pharmacodynamic parameters, limiting its use. Nanotechnology is often employed to reduce the therapeutic dosage required for effective therapy, while also minimizing the systemic side effects of chemotherapy drugs. However, there is no nanoformulation of paclitaxel with chemosensitization motifs built in. With this objective, we screened eleven pharmaceutical excipients to develop an alternative paclitaxel nanoformulation using a self-assembly method. Based on the screening results, we observed tannic acid possesses unique properties to produce a paclitaxel nanoparticle formulation, i.e., tannic acid-paclitaxel nanoparticles. This stable TAP nanoformulation, referred to as TAP nanoparticles (TAP NPs), showed a spherical shape of ~ 102 nm and negative zeta potential of ~ -8.85. The presence of PTX in TAP NPs was confirmed by Fourier Transform Infrared (FTIR) spectra, thermogravimetric analyzer (TGA), and X-ray diffraction (XRD). Encapsulation efficiency of PTX in TAP NPs was determined to be ≥96%. Intracellular drug uptake of plain drug PTX on breast cancer cells (MDA-MB-231) shows more or less constant drug levels in 2 to 6 h, suggesting drug efflux by the P-gp transporters, over TAP NPs, in which PTX uptake was more than 95.52 ±â€¯11.01% in 6 h, as analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Various biological assays such as proliferation, clonogenic formation, invasion, and migration confirm superior anticancer effects of TAP NPs over plain PTX at all tested concentrations. P-gp expression, beta-tubulin stabilization, Western blot, and microarray analysis further confirm the improved therapeutic potential of TAP NPs. These results suggest that the TAP nanoformulation provides an important reference for developing a therapeutic nanoformulation affording pronounced, enhanced effects in breast cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Nanopartículas/química , Paclitaxel/farmacologia , Taninos/química , Antineoplásicos Fitogênicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Paclitaxel/química , Tamanho da Partícula , Propriedades de Superfície , Espectrometria de Massas em Tandem , Células Tumorais Cultivadas
12.
Chem Res Toxicol ; 27(12): 2052-61, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25372409

RESUMO

Certain aromatic nitriles are well-known inhibitors of cysteine proteases. The mode of action of these compounds involves the formation of a reversible or irreversible covalent bond between the nitrile and a thiol group in the active site of the enzyme. However, the reactivity of these aromatic nitrile-substituted heterocycles may lead inadvertently to nonspecific interactions with DNA, protein, glutathione, and other endogenous components, resulting in toxicity and complicating the use of these compounds as therapeutic agents. In the present study, the intrinsic reactivity and associated structure-property relationships of cathepsin K inhibitors featuring substituted pyridazines [6-phenylpyridazine-3-carbonitrile, 6-(4-fluorophenyl)pyridazine-3-carbonitrile, 6-(4-methoxyphenyl)pyridazine-3-carbonitrile, 6-p-tolylpyridazine-3-carbonitrile], pyrimidines [5-p-tolylpyrimidine-2-carbonitrile, 5-(4-fluorophenyl)pyrimidine-2-carbonitrile], and pyridines [5-p-tolylpicolinonitrile and 5-(4-fluorophenyl)picolinonitrile] were evaluated using a combination of computational and analytical approaches to establish correlations between electrophilicity and levels of metabolites that were formed in glutathione- and N-acetylcysteine-supplemented human liver microsomes. Metabolites that were characterized in this study featured substituted thiazolines that were formed following rearrangements of transient glutathione and N-acetylcysteine conjugates. Peptidases including γ-glutamyltranspeptidase were shown to catalyze the formation of these products, which were formed to lesser extents in the presence of the selective γ-glutamyltranspeptidase inhibitor acivicin and the nonspecific peptidase inhibitors phenylmethylsulfonyl fluoride and aprotinin. Of the chemical series mentioned above, the pyrimidine series was the most susceptible to metabolism to thiazoline-containing products, followed, in order, by the pyridazine and pyridine series. This trend was in keeping with the diminishing electrophilicity across these series, as demonstrated by in silico modeling. Hence, mechanistic insights gained from this study could be used to assist a medicinal chemistry campaign to design cysteine protease inhibitors that were less prone to the formation of covalent adducts.


Assuntos
Microssomos Hepáticos/metabolismo , Modelos Químicos , Nitrilas/metabolismo , Piridazinas/metabolismo , Piridinas/metabolismo , Pirimidinas/metabolismo , Tiazóis/metabolismo , Cromatografia Líquida , Humanos , Espectroscopia de Ressonância Magnética , Espectrofotometria Ultravioleta , Espectrometria de Massas em Tandem
13.
Anal Chem ; 85(22): 10904-12, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24117319

RESUMO

Structural elucidation is an integral part of drug discovery and development. In recent years, due to acceleration of the drug discovery and development process, there is a significant need for highly efficient methodologies for structural elucidation. In this work, we devised and standardized a simple and economical online hydrogen-deuterium exchange methodology, which can be used for structure elucidation purposes. Deuterium oxide (D2O) was infused as a postcolumn addition using the syringe pump at the time of elution of the analyte. The obtained hydrogen/deuterium (H/D) exchange spectrum of the unknown analyte was compared with the nonexchanged spectrum, and the extent of deuterium incorporation was delineated by using an algorithm to deconvolute partial H/D exchange, which confirmed the number of labile hydrogen(s) in the analyte. The procedure was standardized by optimizing flow rates of LC output, D2O infusion, sheath gas, and auxiliary gas using the model compound sulfasalazine. The robustness of the methodology was demonstrated by performing sensitivity analysis of various parameters such as concentrations of analyte, effect of matrices, concentrations of aqueous mobile phase, and types of LC modifiers. The optimized technique was also applied to chemically diverse analytes and tested on various mass spectrometers. Moreover, utility of the technique was demonstrated in the areas of impurity profiling and metabolite identification, taking pravastatin-lactone and N-oxide desloratidine, as examples.


Assuntos
Cromatografia Líquida/métodos , Deutério/química , Hidrogênio/química , Sistemas On-Line , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Humanos , Lactonas/química , Loratadina/análogos & derivados , Loratadina/química , Metabolômica , Microssomos Hepáticos/metabolismo , Plasma/metabolismo , Pravastatina/química , Pravastatina/isolamento & purificação , Ratos , Urinálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...