Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(14): e2308092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38118057

RESUMO

Synthetic biology applies concepts from electrical engineering and information processing to endow cells with computational functionality. Transferring the underlying molecular components into materials and wiring them according to topologies inspired by electronic circuit boards has yielded materials systems that perform selected computational operations. However, the limited functionality of available building blocks is restricting the implementation of advanced information-processing circuits into materials. Here, a set of protease-based biohybrid modules the bioactivity of which can either be induced or inhibited is engineered. Guided by a quantitative mathematical model and following a design-build-test-learn (DBTL) cycle, the modules are wired according to circuit topologies inspired by electronic signal decoders, a fundamental motif in information processing. A 2-input/4-output binary decoder for the detection of two small molecules in a material framework that can perform regulated outputs in form of distinct protease activities is designed. The here demonstrated smart material system is strongly modular and can be used for biomolecular information processing for example in advanced biosensing or drug delivery applications.


Assuntos
Modelos Teóricos , Biologia Sintética , Sistemas de Liberação de Medicamentos , Peptídeo Hidrolases
2.
Adv Mater ; 34(2): e2104555, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34545651

RESUMO

Personalized antibiotherapy ensures that the antibiotic concentration remains in the optimal therapeutic window to maximize efficacy, minimize side effects, and avoid the emergence of drug resistance due to insufficient dosing. However, such individualized schemes need frequent sampling to tailor the blood antibiotic concentrations. To optimally integrate therapeutic drug monitoring (TDM) into the clinical workflow, antibiotic levels can either be measured in blood using point-of-care testing (POCT), or can rely on noninvasive sampling. Here, a versatile biosensor with an antibody-free assay for on-site TDM is presented. The platform is evaluated with an animal study, where antibiotic concentrations are quantified in different matrices including whole blood, plasma, urine, saliva, and exhaled breath condensate (EBC). The clearance and the temporal evaluation of antibiotic levels in EBC and plasma are demonstrated. Influence of matrix effects on measured drug concentrations is determined by comparing the plasma levels with those in noninvasive samples. The system's potential for blood-based POCT is further illustrated by tracking ß-lactam concentrations in untreated blood samples. Finally, multiplexing capabilities are explored successfully for multianalyte/sample analysis. By enabling a rapid, low-cost, sample-independent, and multiplexed on-site TDM, this system can shift the paradigm of "one-size-fits-all" strategy.


Assuntos
Antibacterianos , Técnicas Biossensoriais , Animais , Monitoramento de Medicamentos , Testes Imediatos
3.
Small ; 18(6): e2105157, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34859962

RESUMO

Controlling the time and dose of nanoparticulate drug delivery by administration of small molecule drugs holds promise for efficient and safer therapies. This study describes a versatile approach of exploiting antibody-ligand interactions for the design of small molecule-responsive nanocarrier and nanocomposite systems. For this purpose, antibody fragments (scFvs) specific for two distinct small molecule ligands are designed. Subsequently, the surface of nanoparticles (liposomes or adeno-associated viral vectors, AAVs) is modified with these ligands, serving as anchor points for scFv binding. By modifying the scFvs with polymer tails, they can act as a non-covalently bound shielding layer, which is recruited to the anchor points on the nanoparticle surface and prevents interactions with cultured mammalian cells. Administration of an excess of the respective ligand triggers competitive displacement of the shielding layer from the nanoparticle surface and restores nanoparticle-cell interactions. The same principle is applied for developing hydrogel depots that can release integrated AAVs or liposomes in response to small molecule ligands. The liberated nanoparticles subsequently deliver their cargoes to cells. In summary, the utilization of different antibody-ligand interactions, different nanoparticles, and different release systems validates the versatility of the design concept described herein.


Assuntos
Lipossomos , Nanopartículas , Animais , Vetores Genéticos , Ligantes , Mamíferos , Nanopartículas/química , Polímeros
4.
Sci Adv ; 7(25)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34134986

RESUMO

Methodologies for the controlled delivery of genetic information into target cells are of utmost importance for genetic engineering in both fundamental and applied research. However, available methods for efficient gene transfer into user-selected or even single cells suffer from low throughput, the need for complicated equipment, high invasiveness, or side effects by off-target viral uptake. Here, we engineer an adeno-associated viral (AAV) vector system that transfers genetic information into native target cells upon illumination with cell-compatible red light. This OptoAAV system allows adjustable and spatially resolved gene transfer down to single-cell resolution and is compatible with different cell lines and primary cells. Moreover, the sequential application of multiple OptoAAVs enables spatially resolved transduction with different transgenes. The approach presented is likely extendable to other classes of viral vectors and is expected to foster advances in basic and applied genetic research.


Assuntos
Dependovirus , Técnicas de Transferência de Genes , Dependovirus/genética , Dependovirus/metabolismo , Terapia Genética/métodos , Vetores Genéticos/genética , Transdução Genética
5.
Adv Sci (Weinh) ; 8(9): 2004018, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33977059

RESUMO

Three recent approvals and over 100 ongoing clinical trials make adeno-associated virus (AAV)-based vectors the leading gene delivery vehicles in gene therapy. Pharmaceutical companies are investing in this small and nonpathogenic gene shuttle to increase the therapeutic portfolios within the coming years. This prospect of marking a new era in gene therapy has fostered both investigations of the fundamental AAV biology as well as engineering studies to enhance delivery vehicles. Driven by the high clinical potential, a new generation of synthetic-biologically engineered AAV vectors is on the rise. Concepts from synthetic biology enable the control and fine-tuning of vector function at different stages of cellular transduction and gene expression. It is anticipated that the emerging field of synthetic-biologically engineered AAV vectors can shape future gene therapeutic approaches and thus the design of tomorrow's gene delivery vectors. This review describes and discusses the recent trends in capsid and vector genome engineering, with particular emphasis on synthetic-biological approaches.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Biologia Sintética/métodos
6.
Adv Biochem Eng Biotechnol ; 178: 197-226, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33582837

RESUMO

Synthetic biology is strongly inspired by concepts of engineering science and aims at the design and generation of artificial biological systems in different fields of research such as diagnostics, analytics, biomedicine, or chemistry. To this aim, synthetic biology uses an engineering approach relying on a toolbox of molecular sensors and switches that endows cellular hosts with non-natural computing functions and circuits. Importantly, this concept is not only limited to cellular approaches. Synthetic biological building blocks have also conferred sensing and switching capability to otherwise inactive materials. This principle has attracted high interest for the development of biohybrid materials capable of sensing and responding to specific molecular stimuli, such as disease biomarkers, antibiotics, or heavy metals. Moreover, the interconnection of individual sense-and-respond materials to complex materials systems has enabled the processing of, for example, multiple inputs or the amplification of signals using feedback topologies. Such systems holding high potential for applications in the analytical and diagnostic sectors will be described in this chapter.


Assuntos
Hidrogéis , Biologia Sintética
7.
Molecules ; 24(10)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117169

RESUMO

The engineering of enzymes for the purpose of controlling their activity represents a valuable approach to address challenges in both fundamental and applied research. Here, we describe and compare different design strategies for the generation of a human rhinovirus-14 (HRV14) 3C protease-inducible caspase-3 (CASP3). We exemplify the application potential of the resulting protease by controlling the activity of a synthetic enzyme cascade, which represents an important motif for the design of artificial signal transduction networks. In addition, we use our engineered CASP3 to characterize the effect of aspartate mutations on enzymatic activity. Besides the identification of mutations that render the enzyme inactive, we find the CASP3-D192E mutant (aspartate-to-glutamate exchange at position 192) to be inaccessible for 3C protease-mediated cleavage. This indicates a structural change of CASP3 that goes beyond a slight misalignment of the catalytic triad. This study could inspire the design of additional engineered proteases that could be used to unravel fundamental research questions or to expand the collection of biological parts for the design of synthetic signaling pathways.


Assuntos
Caspase 3/genética , Cisteína Endopeptidases/genética , Engenharia de Proteínas , Rhinovirus/enzimologia , Proteínas Virais/genética , Proteases Virais 3C , Ácido Aspártico/metabolismo , Caspase 3/química , Caspase 3/metabolismo , Domínio Catalítico/genética , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Mutação , Proteínas Virais/química , Proteínas Virais/metabolismo
8.
Adv Sci (Weinh) ; 6(4): 1801320, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30828524

RESUMO

Feedforward and feedback loops are key regulatory elements in cellular signaling and information processing. Synthetic biology exploits these elements for the design of molecular circuits that enable the reprogramming and control of specific cellular functions. These circuits serve as a basis for the engineering of complex cellular networks, opening the door for numerous medical and biotechnological applications. Here, a similar principle is applied. Feedforward and positive feedback circuits are incorporated into biohybrid polymer materials in order to develop signal-sensing and signal-processing devices. This concept is exemplified by the detection of the proteolytic activity of the botulinum neurotoxin A. To this aim, site-specific proteases are incorporated into receiver, transmitter, and output materials, and their release, diffusion, and/or activation are wired according to a feedforward or a positive feedback circuit. The development of a quantitative mathematical model enables analysis and comparison of the performance of both systems. The flexible design could be easily adapted to detect other toxins or molecules of interest. Furthermore, cellular signaling or gene regulatory pathways could provide additional blueprints for the development of novel biohybrid circuits. Such information-processing, material-embedded biological circuits hold great promise for a variety of analytical, medical, or biotechnological applications.

9.
Int J Mol Sci ; 19(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400198

RESUMO

Nanobodies, the smallest possible antibody format, have become of considerable interest for biotechnological and immunotherapeutic applications. They show excellent robustness, are non-immunogenic in humans, and can easily be engineered and produced in prokaryotic hosts. Traditionally, nanobodies are selected from camelid immune libraries involving the maintenance and treatment of animals. Recent advances have involved the generation of nanobodies from naïve or synthetic libraries. However, such approaches demand large library sizes and sophisticated selection procedures. Here, we propose an alternative, two-step approach for the design and generation of nanobodies. In a first step, complementarity-determining regions (CDRs) are grafted from conventional antibody formats onto nanobody frameworks, generating weak antigen binders. In a second step, the weak binders serve as templates to design focused synthetic phage libraries for affinity maturation. We validated this approach by grafting toxin- and hapten-specific CDRs onto frameworks derived from variable domains of camelid heavy-chain-only antibodies (VHH). We then affinity matured the hapten binder via panning of a synthetic phage library. We suggest that this strategy can complement existing immune, naïve, and synthetic library based methods, requiring neither animal experiments, nor large libraries, nor sophisticated selection protocols.


Assuntos
Engenharia de Proteínas/métodos , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/química , Sequência de Aminoácidos , Animais , Antígenos/metabolismo , Camelus , Regiões Determinantes de Complementaridade , Fluoresceína/metabolismo , Haptenos/metabolismo , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/metabolismo , Região Variável de Imunoglobulina/química , Biblioteca de Peptídeos , Toxinas Biológicas/metabolismo
10.
Data Brief ; 19: 665-677, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29900367

RESUMO

The translation of engineering designs to materials sciences by means of synthetic biological tools represents a novel concept for the development of information-processing materials systems. Here, we provide data on the mathematical model-guided implementation of a biomaterials-based positive feedback loop for the detection of proteolytic activities. Furthermore, we present data on an extended system design for the detection of the antibiotic novobiocin. This work is related to the research article "Synthetic biology-inspired design of signal-amplifying materials systems" (Wagner et al., 2018) [1].

11.
Eng Life Sci ; 17(1): 36-46, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32624727

RESUMO

Bacterial microcompartments (BMCs) are intracellular proteinaceous organelles devoid of a lipid membrane that encapsulates enzymes of metabolic pathways. Salmonella enterica synthesizes propanediol-utilization BMCs containing enzymes involved in the degradation of 1,2-propanediol. BMCs can be designed to enclose heterologous proteins, paving the way to engineered catalytic microreactors. Here, we investigate broader applicability of this design principle by directing three different enzymes to the BMC. We demonstrate that ß-galactosidase, esterase Est5, and cofactor-dependent glycerol dehydrogenase can be directed to the BMC and copurified with the microcompartment shell in a catalytically active form. We show that the BMC shell protects enzymes from pH-dependent but not from temperature stress. Moreover, we provide evidence that the heterologously expressed BMCs act as a moderately selective diffusion barrier for lipophilic small molecules.

12.
Adv Drug Deliv Rev ; 105(Pt A): 77-95, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27179764

RESUMO

One key aspect of synthetic biology is the development and characterization of modular biological building blocks that can be assembled to construct integrated cell-based circuits performing computational functions. Likewise, the idea of extracting biological modules from the cellular context has led to the development of in vitro operating systems. This principle has attracted substantial interest to extend the repertoire of functional materials by connecting them with modules derived from synthetic biology. In this respect, synthetic biological switches and sensors, as well as biological targeting or structure modules, have been employed to upgrade functions of polymers and solid inorganic material. The resulting systems hold great promise for a variety of applications in diagnosis, tissue engineering, and drug delivery. This review reflects on the most recent developments and critically discusses challenges concerning in vivo functionality and tolerance that must be addressed to allow the future translation of such synthetic biology-upgraded materials from the bench to the bedside.


Assuntos
Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Animais , Tecnologia Biomédica , Humanos
13.
Sci Rep ; 6: 23713, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27025703

RESUMO

Here, we applied optoRAF, an optogenetic tool for light-controlled clustering and activation of RAF proteins that mimics the natural occurring RAS-mediated dimerization. This versatile tool allows studying the effect on BRAF and CRAF homodimer- as well as heterodimer-induced RAF signaling. Vemurafenib and dabrafenib are two clinically approved inhibitors for BRAF that efficiently suppress the kinase activity of oncogenic BRAF (V600E). However in wild-type BRAF expressing cells, BRAF inhibitors can exert paradoxical activation of wild-type CRAF. Using optoRAF, vemurafenib was identified as paradoxical activator of BRAF and CRAF homo- and heterodimers. Dabrafenib enhanced activity of light-stimulated CRAF at low dose and inhibited CRAF signaling at high dose. Moreover, dabrafenib increased the protein level of CRAF proteins but not of BRAF proteins. Increased CRAF levels correlate with elevated RAF signaling in a dabrafenib-dependent manner, independent of light activation.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Ensaios de Seleção de Medicamentos Antitumorais , Indução Enzimática/efeitos da radiação , Células HEK293 , Células HeLa , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Optogenética , Oximas/farmacologia , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais , Sulfonamidas/farmacologia , Vemurafenib
14.
ACS Synth Biol ; 3(12): 986-9, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25524106

RESUMO

The ability to control mammalian genes in a synergistic mode using synthetic transcription factors is highly desirable in fields of tissue engineering, stem cell reprogramming and fundamental research. In this study, we developed a standardized toolkit utilizing an engineered CRISPR/Cas9 system that enables customizable gene regulation in mammalian cells. The RNA-guided dCas9 protein was implemented as a programmable transcriptional activator or repressor device, including targeting of endogenous loci. For facile assembly of single or multiple CRISPR RNAs, our toolkit comprises a modular RNAimer plasmid, which encodes the required noncoding RNA components.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Regulação da Expressão Gênica/genética , Engenharia Genética/métodos , Células HEK293 , Humanos , Plasmídeos/genética
15.
Sci Rep ; 4: 3759, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24457557

RESUMO

The pre-clinical and clinical development of viral vehicles for gene transfer increased in recent years, and a recombinant adeno-associated virus (rAAV) drug took center stage upon approval in the European Union. However, lack of standardization, inefficient purification methods and complicated retargeting limit general usability. We address these obstacles by fusing rAAV-2 capsids with two modular targeting molecules (DARPin or Affibody) specific for a cancer cell-surface marker (EGFR) while simultaneously including an affinity tag (His-tag) in a surface-exposed loop. Equipping these particles with genes coding for prodrug converting enzymes (thymidine kinase or cytosine deaminase) we demonstrate tumor marker specific transduction and prodrug-dependent apoptosis of cancer cells. Coding terminal and loop modifications in one gene enabled specific and scalable purification. Our genetic parts for viral production adhere to a standardized cloning strategy facilitating rapid prototyping of virus directed enzyme prodrug therapy (VDEPT).


Assuntos
Apoptose , Dependovirus/genética , Terapia Genética/métodos , Neoplasias/terapia , Pró-Fármacos/uso terapêutico , Timidina Quinase/metabolismo , Western Blotting , Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Vetores Genéticos/administração & dosagem , Humanos , Neoplasias/genética , Neoplasias/patologia , Timidina Quinase/genética , Transdução Genética , Células Tumorais Cultivadas , Replicação Viral
16.
ACS Synth Biol ; 3(5): 280-5, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24090449

RESUMO

Light-dependent dimerization is the basis for recently developed noninvasive optogenetic tools. Here we present a novel tool combining optogenetics with the control of protein kinase activity to investigate signal transduction pathways. Mediated by Arabidopsis thaliana photoreceptor cryptochrome 2, we activated the protein kinase C-RAF by blue light-dependent dimerization, allowing for decoupling from upstream signaling events induced by surface receptors. The activation by light is fast, reversible, and not only time but also dose dependent as monitored by phosphorylation of ERK1/2. Additionally, light-activated C-RAF controls serum response factor-mediated gene expression. Light-induced heterodimerization of C-RAF with a kinase-dead mutant of B-RAF demonstrates the enhancing role of B-RAF as a scaffold for C-RAF activity, which leads to the paradoxical activation of C-RAF found in human cancers. This optogenetic tool enables reversible control of protein kinase activity in signal duration and strength. These properties can help to shed light onto downstream signaling processes of protein kinases in living cells.


Assuntos
Optogenética/métodos , Proteínas Quinases , Transdução de Sinais , Biologia Sintética/métodos , Proteínas de Arabidopsis , Criptocromos , Células HEK293 , Humanos , Fosforilação/genética , Fosforilação/efeitos da radiação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/efeitos da radiação , Multimerização Proteica/genética , Multimerização Proteica/efeitos da radiação , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/efeitos da radiação , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...