Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867045

RESUMO

Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other diseases1,2. Most mutations begin as nucleotide mismatches or damage in one of the two strands of the DNA before becoming double-strand mutations if unrepaired or misrepaired3,4. However, current DNA-sequencing technologies cannot accurately resolve these initial single-strand events. Here we develop a single-molecule, long-read sequencing method (Hairpin Duplex Enhanced Fidelity sequencing (HiDEF-seq)) that achieves single-molecule fidelity for base substitutions when present in either one or both DNA strands. HiDEF-seq also detects cytosine deamination-a common type of DNA damage-with single-molecule fidelity. We profiled 134 samples from diverse tissues, including from individuals with cancer predisposition syndromes, and derive from them single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumours deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples that are deficient in only polymerase proofreading. We also define a single-strand damage signature for APOBEC3A. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. As double-strand DNA mutations are only the end point of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable studies of how mutations arise in a variety of contexts, especially in cancer and ageing.

2.
Chem Res Toxicol ; 37(2): 419-428, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38314730

RESUMO

Photolysis of DNA attached to gold nanoparticles (AuNPs) with ultraviolet (UV) photons induces DNA damage. The release of nucleobases (Cyt, Gua, Ade, and Thy) from DNA was the major reaction (99%) with an approximately equal release of pyrimidines and purines. This reaction contributes to the formation of abasic sites in DNA. In addition, liquid chromatography-mass spectrometry/MS (LC-MS/MS) analysis revealed the formation of reduction products of pyrimidines (5,6-dihydrothymidine and 5,6-dihydro-2'-deoxyuridine) and eight 2',3'- and 2',5'-dideoxynucleosides. In contrast, there was no evidence of the formation of 5-hydroxymethyluracil and 8-oxo-7,8-dihydroguanine, which are common oxidation products of thymine and guanine, respectively. Using appropriate filters, the main photochemical reactions were found to involve photoelectrons ejected from AuNPs by UV photons. The contribution of "hot" conduction band electrons with energies below the photoemission threshold was minor. The mechanism for the release of free nucleobases by photoelectrons is proposed to take place by the initial formation of transient molecular anions of the nucleobases, followed by dissociative electron attachment at the C1'-N glycosidic bond connecting the nucleobase to the sugar-phosphate backbone. This mechanism is consistent with the reactivity of secondary electrons ejected by X-ray irradiation of AuNPs attached to DNA, as well as the reactions of various nucleic acid derivatives irradiated with monoenergetic very-low-energy electrons (∼2 eV). These studies should help us to understand the chemistry of nanoparticles that are exposed to UV light and that are used as scaffolds and catalysts in molecular biology, curative agents in photodynamic therapy, and components of sunscreens and cosmetics.


Assuntos
Ouro , Nanopartículas Metálicas , Elétrons , Cromatografia Líquida , Fotólise , Espectrometria de Massas em Tandem , DNA/química , Pirimidinas/química , Dano ao DNA
3.
Free Radic Biol Med ; 206: 111-124, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385568

RESUMO

An excessive blood level of homocysteine (HcySH) is associated with numerous cardiovascular and neurodegenerative disease conditions. It has been suggested that direct S-homocysteinylation, of proteins by HcySH, or N-homosteinylation by homocysteine thiolactone (HTL) could play a causative role in these maladies. In contrast, ascorbic acid (AA) plays a significant role in oxidative stress prevention. AA is oxidized to dehydroascorbic acid (DHA) and if not rapidly reduced back to AA may degrade to reactive carbonyl products. In the present work, DHA is shown to react with HTL to produce a spiro bicyclic ring containing a six-membered thiazinane-carboxylic acid moiety. This reaction product is likely formed by initial imine condensation and subsequent hemiaminal product followed by HTL ring opening and intramolecular nucleophilic attack of the resulting thiol anion to form the spiro product. The reaction product was determined to have an accurate mass of 291.0414 and a molecular composition C10H13NO7S containing five double bond equivalents. We structurally characterized the reaction product using a combination of accurate mass tandem mass spectrometry, 1D and 2D-nuclear magnetic resonance. We also demonstrated that formation of the reaction product prevented peptide and protein N-homocysteinylation by HTL using a model peptide and α-lactalbumin. Furthermore, the reaction product is formed in Jurkat cells when exposed to HTL and DHA.


Assuntos
Ácido Desidroascórbico , Doenças Neurodegenerativas , Humanos , Peptídeos , Homocisteína
4.
bioRxiv ; 2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36824744

RESUMO

Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other genetic diseases1-4. Almost all of these mosaic mutations begin as nucleotide mismatches or damage in only one of the two strands of the DNA prior to becoming double-strand mutations if unrepaired or misrepaired5. However, current DNA sequencing technologies cannot resolve these initial single-strand events. Here, we developed a single-molecule, long-read sequencing method that achieves single-molecule fidelity for single-base substitutions when present in either one or both strands of the DNA. It also detects single-strand cytosine deamination events, a common type of DNA damage. We profiled 110 samples from diverse tissues, including from individuals with cancer-predisposition syndromes, and define the first single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumors deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples deficient in only polymerase proofreading. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. Since the double-strand DNA mutations interrogated by prior studies are only the endpoint of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable new studies of how mutations arise in a variety of contexts, especially in cancer and aging.

5.
Free Radic Biol Med ; 196: 22-36, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36603668

RESUMO

Molecular oxygen sensitizes DNA to damage induced by ionizing radiation, Fenton-like reactions, and other free radical-mediated reactions. It rapidly converts carbon-centered radicals within DNA into peroxyl radicals, giving rise to a plethora of oxidized products consisting of nucleobase and 2-deoxyribose modifications, strand breaks and abasic sites. The mechanism of formation of single oxidation products has been extensively studied and reviewed. However, much evidence shows that reactive peroxyl radicals can propagate damage to vicinal components in DNA strands. These intramolecular reactions lead to the dual alteration of two adjacent nucleotides, designated as tandem or double lesions. Herein, current knowledge about the formation and biological implications of oxidatively generated DNA tandem lesions is reviewed. Thus far, most reported tandem lesions have been shown to arise from peroxyl radicals initially generated at pyrimidine bases, notably thymine, followed by reaction with 5'-flanking bases, especially guanine, although contiguous thymine lesions have also been characterized. Proper biomolecular processing is impaired by several tandem lesions making them refractory to base excision repair and potentially more mutagenic.


Assuntos
Dano ao DNA , Timina , Peróxidos , Radicais Livres , DNA/genética
6.
J Phys Chem B ; 126(28): 5175-5184, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35793462

RESUMO

Understanding the details of DNA damage caused by high-energy particles or photons is complicated by the multitude of reactive species, arising from the ionization and dissociation of H2O, DNA, and protein. In this work, oligonucleotides (ODNs) are irradiated with a beam of low-energy electrons of 1.3 to 2.3 eV, which can only induce damage via the decay of shape resonances into various dissociative electron attachment channels. Using LC-MS/MS analysis, the major products are the release of nonmodified nucleobases (NB; Cyt ≫ Thy ∼ Ade > Gua). Additional damage includes 5,6-dihydropyrimidines (dHT > dHU) and eight nucleosides with modified sugar moieties consisting of 2',3'- and 2',5'-dideoxynucleosides (ddG > ddA ∼ ddC > ddT). The distribution of products is remarkably different in a 16-mer ODN compared to that observed previously with thymidylyl-(3'-5')-thymidine. This difference is explained by electron delocalization occurring within a sufficiently long strand, the DEA theory of O'Malley, and recent time-dependent density functional theory calculations.


Assuntos
Elétrons , Espectrometria de Massas em Tandem , Cromatografia Líquida , DNA , Dano ao DNA , Didesoxinucleosídeos
7.
Photochem Photobiol ; 98(3): 519-522, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35615913
9.
J Phys Chem Lett ; 12(40): 9947-9954, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34617774

RESUMO

The presence of gold nanoparticles (AuNPs) greatly enhances the formation of DNA damage when exposed to therapeutic X-rays. Three types of DNA damage are assessed in irradiated DNA by enzymatic digestion coupled to liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. The major type of damage is release of the four nonmodified nucleobases, with a bias toward the release of cytosine and thymine. The second most important pathway involves the formation of several common reduction and oxidation products of DNA. Lastly, eight unique modifications of the 2-deoxyribose moiety are formed, which includes the 2',3'- and 2',5'-dideoxynucleosides (ddNs) of the four canonical nucleosides. The yield of ddNs decreases in the following order: ddG > ddA > ddC > ddT. From the yield and distribution of products, most of the damage is considered to arise from the generation of Auger/low-energy electrons (LEEs) and their reaction with DNA.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Cromatografia Líquida , Dano ao DNA , Espectrometria de Massas em Tandem , Raios X
10.
Exp Eye Res ; 205: 108473, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33524365

RESUMO

DNA methylation and hydroxymethylation represent important epigenetic modifications involved in cell differentiation. DNA hydroxymethylation can be used to classify independent biological samples by tissue type. Relatively little is known regarding the genomic abundance and function of 5-hydroxymethylcytosine (5-hmC) in ocular tissues. The choroid supplies oxygen and nutrients to the outer retina through its dense network of blood vessels. This connective tissue is mainly composed of pigmented melanocytes, and stromal fibroblasts. Since DNA hydroxymethylation level is relatively high in cutaneous melanocytes, we investigated the presence of 5-hmC in choroidal melanocytes, as well as the expression of ten-eleven translocation methylcytosine dioxygenases (TETs) and isocitrate dehydrogenases (IDHs) implicated in this DNA demethylation pathway. Immunofluorescence, DNA slot blots and liquid chromatography coupled to tandem mass spectrometry performed with choroidal tissues and melanocytes within these tissues revealed that they have a relatively high level of 5-hmC. We also examined the expression of TET1/2 and IDH1/2 in choroidal melanocytes by gene expression profiling, qPCR and Western blotting. In addition, we detected decreased levels of 5-hmC when choroidal melanocytes were exposed to a lower concentration of oxygen. Our study therefore demonstrates that DNA hydroxymethylation is present in choroidal melanocytes, and that the abundance of this epigenetic mark is impacted by hypoxia.


Assuntos
5-Metilcitosina/análogos & derivados , Corioide/metabolismo , Dioxigenases/metabolismo , Isocitrato Desidrogenase/metabolismo , Melanócitos/metabolismo , 5-Metilcitosina/metabolismo , Idoso , Western Blotting , Cromatografia Líquida , Metilação de DNA , Dioxigenases/genética , Feminino , Imunofluorescência , Expressão Gênica , Humanos , Isocitrato Desidrogenase/genética , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem , Doadores de Tecidos
11.
Chem Res Toxicol ; 34(1): 80-90, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33417438

RESUMO

Ozone is a major component of air pollution and carries potentially mutagenic and harmful affects to health. The oxidation of isolated calf thymus DNA (CT-DNA) led to the nearly quantitative loss of normal DNA 2'-deoxyribonucleosides in the following order: T > G > C ≫ A. The major modification of pyrimidines (T, C, and 5-methylcytosine (5mC)) was the corresponding 5-hydroxyhydantoin derivative after complete digestion of DNA to its component 2'-deoxyribonucleosides. The oxidation of 5mC was 2.5-fold more susceptible than C considering the relative mole fraction of 5mC to C in CT-DNA. Other common oxidation products of pyrimidines (e.g., 5,6-dihydroxy-5,6-dihydropyrimidines, the so-called pyrimidine 5,6-glycols) were formed with a lower yield than 5-hydroxyhydantoin derivatives. In addition, several common oxidation products of G were observed (e.g., 8-oxo-7,8-dihydroguanine (8oxoG)) albeit with relatively minor yields. The sum of individual products was notably less than the loss of 2'-deoxyribonucleosides from which they were derived. In a search for additional products, we discovered the formation of pyrimidine ring fragments, predominantly N-formamide and N-urea, which were measured as a dinucleotide next to a nonmodified nucleotide upon partial digestion of oxidized DNA. Interestingly, the latter fragments were also observed in dinucleotides containing 8oxoG, indicating the formation of tandem lesions during ozonolysis of DNA. The oxidation of DNA upon exposure to ozone can be explained by reactions of an intermediate ozonide. These studies underline the complexity of ozone-induced DNA damage and provide valuable information to assess the formation of this damage in cellular DNA.


Assuntos
DNA/metabolismo , Ozônio/farmacologia , Animais , Pareamento de Bases , Bovinos , DNA/isolamento & purificação , Dano ao DNA , Estrutura Molecular , Oxirredução , Ozônio/química
12.
Chem Res Toxicol ; 33(2): 565-575, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31820932

RESUMO

The reaction of hydroxyl radical (HO•) with thymine in DNA generates 5-(uracilyl)-methyl radicals (T•) and the corresponding methylperoxyl radical (TOO•) in the presence of O2, which in turn propagates damage by reacting with a vicinal nucleobase. This leads to so-called double or tandem lesions. Because methyl oxidation products of thymine are major products, we investigated the reactivity of TOO• using a photolabile precursor: 5-(phenylthiomethyl)uracil (TSPh). The precursor was prepared and incorporated into a DNA trinucleotide: 5'-d(GpTSPhpA)-3' (G-TSPh-A). Upon photolysis, the resulting products were characterized by LC-MS/MS. Thereby, we identified four tandem lesions involving GpT, which include either 2,6-diamino-4-hydroxy-5-formamidopyrimidine (fapyG) or 8-oxo-7,8-dihydroguanine (oxoG) in tandem with either 5-formyluracil (fU) or 5-hydroxymethyluracil (hmU). The formation of these tandem lesions is explained by initial addition of TOO• to the C8 of guanine moiety, giving an N7-guanine cross-linked radical. The latter radical undergoes either reduction to an 7,8-saturated endoperoxide or oxidation to an 7,8-unsaturated endoperoxide, which transform into fapyG-fU-A and oxoG-fU-A, respectively. This is supported by the effect of a reducing (dithiothreitol) and oxidizing agent (Fe3+) on product formation. This study expands the repertoire of tandem lesions that can occur at GpT sequences and underlines the importance of redox environment.


Assuntos
Guanina/análise , Peróxidos/análise , Cromatografia Líquida , Estrutura Molecular , Espectrometria de Massas em Tandem
13.
Free Radic Res ; 53(9-10): 1014-1018, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31514561

RESUMO

This rebuttal letter is aimed at refuting the poor and false arguments elaborated by Chatgilialoglu (preceding article) in his response to the position article (Cadet et al. Free Radic Res 2019;53:574-577) that focussed on the putative reliability of the HPLC-MS/MS measurements of five radiation-induced damage to cellular DNA, which included 8-oxo-7,8-dihydro-2'-deoxyadenosine and the (5'R) and (5'S) diastereomers of 5',8-cyclo-2'-deoxyadenosine and 5',8-cyclo-2'-deoxyadenosine (Krokidis et al. Free Radic Res 2017;51:470-482). Unfortunately, none of the main issues we raised on the suitability of the analytical approach and the shortcomings associated with DNA extraction in HPLC based measurement methods of oxidatively generated damage in cells were properly considered in Chatigilialolu's letter. The main questionable issues include the lack of information on the sensitivity of HPLC-MS/MS analysis, the absence of a dose curve that is essential in the formation of damage and the nonconsideration of artifactual oxidation.

14.
J Am Chem Soc ; 141(26): 10315-10323, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31244176

RESUMO

Numerous experimental studies show that 5-15 eV electrons induce strand breaks in DNA at energies below the ionization threshold of DNA components. In this energy range, DNA damage arises principally by the formation of transient negative ions, decaying into dissociative electron attachment (DEA) and electronic excitation of dissociative states. Here, we carried out LC-MS/MS analysis of the degradation products arising from bombardment of TpT, a DNA model compound, irradiated with very low energy electrons (vLEEs; ∼1.8 eV). The formation of thymidine 5'-monophosphate (TMP5') together with 2',3'-dideoxythymidine (ddT3') can be explained by cleavage of the C3'-O bond of TpT, whereas thymidine 3'-monophosphate (TMP3') and 2',5'-dideoxythymidine (ddT5') are formed by cleavage of the C5'-O bond. The formation of ddT3' and ddT5' decreased upon irradiation of either TMP5' or TMP3', and even further in the case of thymidine, underlining the critical role of the phosphate group. Interestingly, the yield of TMP5' and TMP3' was higher than that of the corresponding ddT3' and ddT5' products, suggesting alternative fates of C3' and C5'-centered sugar radicals. In contrast, the release of thymine from TpT was minor (<20%) and did not result in the formation of expected products from DEA-mediated cleavage at the N-glycosidic bond. Lastly, vLEE induced the conversion of thymine to 5,6-dihydrothymine (5,6-dhT) within TpT, a reaction likely involving thymine anion radicals. In summary, we show that a major pathway of vLEEs involves DEA-mediated cleavage of the C3'-O and C5'-O bonds of TpT, resulting in the formation of specific fragments, which represent a prompt single strand break in DNA.


Assuntos
DNA/análise , Elétrons , Oligonucleotídeos/química , Timina/química , Cromatografia Líquida , Espectrometria de Massas em Tandem
15.
Free Radic Biol Med ; 141: 233-243, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31228548

RESUMO

Ascorbic acid (vitamin C) plays a significant role in the prevention of oxidative stress. In this process, ascorbate is oxidized to dehydroascorbate (DHA). We have investigated the impact of DHA on peptide/protein intramolecular disulfide formation as well as S-glutathionylation and S-homocysteinylation. S-glutathionylation of peptides/proteins is a reversible, potential regulatory mechanism in oxidative stress. Although the exact role of protein S-homocysteinylation is unknown, it has been proposed to be of importance in pathobiological processes such as onset of cardiovascular disease. Using an in vitro model system, we demonstrate that DHA causes disulfide bond formation within the active site of recombinant human glutaredoxin (Grx-1). DHA also facilities the formation of S-glutathionylation and S-homocysteinylation of a model peptide (AcFHACAAK) as well as Grx-1. We discuss the possible mechanisms of peptide/protein S-thiolation, which can occur either via thiol exchange or a thiohemiketal intermediate. A thiohemiketal DHA-peptide adduct was detected by mass spectrometry and its location on the peptide/protein cysteinyl thiol group was unambiguously confirmed by tandem mass spectrometry. This demonstrates that peptide/protein S-thiolation mediated by DHA is not limited to thiol exchange reactions but also takes place directly via the formation of a thiohemiketal peptide intermediate. Finally, we investigated a potential reducing role of glutathione (GSH) in the presence of S-homocysteinylated peptide/protein adducts. S-homocysteinylated AcFHACAAK, human hemoglobin α-chain and Grx-1 were incubated with GSH. Both peptide and proteins were reduced, and homocysteine replaced with GS-adducts by thiol exchange, as a function of time.


Assuntos
Ácido Desidroascórbico/química , Glutarredoxinas/química , Glutationa/química , Homocisteína/química , Peptídeos/química , Compostos de Sulfidrila/química , Antioxidantes/química , Domínio Catalítico , Cisteína/química , Dimerização , Dissulfetos/química , Hemoglobinas/química , Humanos , Oxirredução , Estresse Oxidativo
16.
J Phys Chem Lett ; 10(11): 2753-2760, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31039309

RESUMO

Applications based on near-infrared femtosecond laser-induced plasma in biological materials involve numerous ionization events that inevitably mediate physicochemical effects. Here, the physical chemistry underlying the action of such plasma is characterized in a system of biological interest. We have implemented wavefront shaping techniques to control the generation of laser-induced low electron density plasma channels in DNA aqueous solutions, which minimize the unwanted thermo-mechanical effects associated with plasma of higher density. The number of DNA base modifications per unit of absolute energy deposited by such cold plasma is compared to those induced by either ultraviolet or standard ionizing radiation (γ-rays). Analyses of various photoinduced, oxidative, and reductive DNA base products show that the effects of laser-induced cold plasma are mainly mediated by reactive radical species produced upon the ionization of water, rather than by the direct interaction of the strong laser field with DNA. In the plasma environment, reactions among densely produced primary radicals result in a dramatic decrease in the yields of DNA damages relative to sparse ionizing radiation. This intense radical production also drives the local depletion of oxygen.

18.
Photochem Photobiol ; 95(1): 59-72, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30380156

RESUMO

Oxidation reactions triggered by low-intensity UV photons represent a minor contribution with respect to the overwhelming pyrimidine base dimerization in both isolated and cellular DNA. The situation is totally different when DNA is exposed to high-intensity UVC radiation under conditions where biphotonic ionization of the four main purine and pyrimidine bases becomes predominant at the expense of singlet excitation processes. The present review article provides a critical survey of the main chemical reactions of the base radical cations thus generated by one-electron oxidation of nucleic acids in model systems and cells. These include oxidation of the bases with the predominant formation of 8-oxo-7,8-dihydroguanine as the result of preferential hole transfer to guanine bases that act as sinks in isolated and cellular DNA. In addition to hydration, other nucleophilic addition reactions involving the guanine radical cation give rise to intra- and interstrand cross-links together with DNA-protein cross-links. Information is provided on the utilization of high-intensity UV laser pulses as molecular biology tools for studying DNA conformational features, nucleic acid-protein interactions and nucleic acid reactivity through DNA-protein cross-links and DNA footprinting experiments.


Assuntos
DNA/química , Modelos Biológicos , Fótons , Cátions , Humanos , Conformação de Ácido Nucleico , Oxirredução , Processos Fotoquímicos , Raios Ultravioleta
19.
Sci Rep ; 8(1): 6860, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717169

RESUMO

In Caenorhabditis elegans, two DNA glycosylases, UNG-1 and NTH-1, and two AP endonucleases, APN-1 and EXO-3, have been characterized from the base-excision repair (BER) pathway that repairs oxidatively modified DNA bases. UNG-1 removes uracil, while NTH-1 can remove 5-hydroxymethyluracil (5-hmU), an oxidation product of thymine, as well as other lesions. Both APN-1 and EXO-3 can incise AP sites and remove 3'-blocking lesions at DNA single strand breaks, and only APN-1 possesses 3'- to 5'-exonulease and nucleotide incision repair activities. We used C. elegans mutants to study the role of the BER pathway in processing 5-hmU. We observe that ung-1 mutants exhibited a decrease in brood size and lifespan, and an elevated level of germ cell apoptosis when challenged with 5-hmU. These phenotypes were exacerbated by RNAi downregulation of apn-1 in the ung-1 mutant. The nth-1 or exo-3 mutants displayed wild type phenotypes towards 5-hmU. We show that partially purified UNG-1 can act on 5-hmU lesion in vitro. We propose that UNG-1 removes 5-hmU incorporated into the genome and the resulting AP site is cleaved by APN-1 or EXO-3. In the absence of UNG-1, the 5-hmU is removed by NTH-1 creating a genotoxic 3'-blocking lesion that requires the action of APN-1.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , DNA Glicosilases/metabolismo , Reparo do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Uracila-DNA Glicosidase/metabolismo , Animais , Apoptose , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Dano ao DNA/genética , DNA Glicosilases/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Endodesoxirribonucleases/genética , Endonucleases/genética , Células Germinativas/metabolismo , Longevidade/genética , Mutação com Perda de Função , Pentoxil (Uracila)/análogos & derivados , Pentoxil (Uracila)/metabolismo , Uracila-DNA Glicosidase/genética
20.
Free Radic Biol Med ; 107: 13-34, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28057600

RESUMO

In this review article, emphasis is placed on the critical survey of available data concerning modified nucleobase and 2-deoxyribose products that have been identified in cellular DNA following exposure to a wide variety of oxidizing species and agents including, hydroxyl radical, one-electron oxidants, singlet oxygen, hypochlorous acid and ten-eleven translocation enzymes. In addition, information is provided about the generation of secondary oxidation products of 8-oxo-7,8-dihydroguanine and nucleobase addition products with reactive aldehydes arising from the decomposition of lipid peroxides. It is worth noting that the different classes of oxidatively generated DNA damage that consist of single lesions, intra- and interstrand cross-links were unambiguously assigned and quantitatively detected on the basis of accurate measurements involving in most cases high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The reported data clearly show that the frequency of DNA lesions generated upon severe oxidizing conditions, including exposure to ionizing radiation is low, at best a few modifications per 106 normal bases. Application of accurate analytical measurement methods has also allowed the determination of repair kinetics of several well-defined lesions in cellular DNA that however concerns so far only a restricted number of cases.


Assuntos
Dano ao DNA , Reparo do DNA , Estresse Oxidativo , Animais , Cromatografia Líquida de Alta Pressão , Adutos de DNA , Dioxigenases/metabolismo , Humanos , Peroxidação de Lipídeos , Radiação Ionizante , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...