Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(29): 35590-35599, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37450887

RESUMO

The synthesis, characterization, and thermogravimetric analysis of tris(N,N'-di-isopropylacetamidinate)molybdenum(III), Mo(iPr-AMD)3, are reported. Mo(iPr-AMD)3 is a rare example of a homoleptic mononuclear complex of molybdenum(III) and fills a longstanding gap in the literature of transition metal(III) trisamidinate complexes. Thermogravimetric analysis (TGA) reveals excellent volatilization at elevated temperatures, pointing to potential applications as a vapor phase precursor for higher temperature atomic layer deposition (ALD), or chemical vapor deposition (CVD) growth of Mo-based materials. The measured TGA temperature window was 200-314 °C for samples in the 3-20 mg range. To validate the utility of Mo(iPr-AMD)3, we demonstrate aerosol-assisted CVD growth of MoO3 from benzonitrile solutions of Mo(iPr-AMD)3 at 500 °C using compressed air as the carrier gas. The resulting films are characterized by X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectroscopy. We further demonstrate the potential for ALD growth at 200 °C with a Mo(iPr-AMD)3/Ar purge/300 W O2 plasma/Ar purge sequence, yielding ultrathin films which retain a nitride/oxynitride component. Our results highlight the broad scope utility and potential of Mo(iPr-AMD)3 as a stable, high-temperature precursor for both CVD and ALD processes.

2.
Dalton Trans ; 51(33): 12540-12548, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35913376

RESUMO

Tetrakis(dithiocarboxylato)molybdenum(IV) complexes of the type Mo(S2CR)4 (R = Me, Et, iPr, Ph) were synthesized, characterized, and prescreened as precursors for aerosol assisted chemical vapor deposition (AACVD) of MoS2 thin films. The thermal behavior of the complexes as determined by TGA and GC-MS was appropriate for AACVD, although the complexes were not sufficiently volatile for conventional CVD bubbler systems. Thin films of MoS2 were grown by AACVD at 500 °C from solutions of Mo(S2CMe)4 in toluene. The films were characterized by GIXRD diffraction patterns which correspond to a 2H-MoS2 structure in the deposited film. Mo-S bonding in 2H-MoS2 was further confirmed by XPS and EDS. The film morphology, vertically oriented structure, and thickness (2.54 µm) were evaluated by FE-SEM. The Raman E12g and A1g vibrational modes of crystalline 2H-MoS2 were observed. These results demonstrate the use of dithiocarboxylato ligands for the chemical vapor deposition of metal sulfides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...