Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 381(6660): 897-906, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37616346

RESUMO

Aging is a major risk factor for impaired cardiovascular health. Because the aging myocardium is characterized by microcirculatory dysfunction, and because nerves align with vessels, we assessed the impact of aging on the cardiac neurovascular interface. We report that aging reduces nerve density in the ventricle and dysregulates vascular-derived neuroregulatory genes. Aging down-regulates microRNA 145 (miR-145) and derepresses the neurorepulsive factor semaphorin-3A. miR-145 deletion, which increased Sema3a expression or endothelial Sema3a overexpression, reduced axon density, mimicking the aged-heart phenotype. Removal of senescent cells, which accumulated with chronological age in parallel to the decline in nerve density, rescued age-induced denervation, reversed Sema3a expression, preserved heart rate patterns, and reduced electrical instability. These data suggest that senescence-mediated regulation of nerve density contributes to age-associated cardiac dysfunction.


Assuntos
Envelhecimento , Senescência Celular , Coração , MicroRNAs , Densidade Microvascular , Miocárdio , Semaforina-3A , Coração/inervação , Microcirculação , MicroRNAs/genética , MicroRNAs/metabolismo , Semaforina-3A/genética , Animais , Camundongos , Envelhecimento/genética , Envelhecimento/patologia , Masculino , Camundongos Endogâmicos C57BL , Senescência Celular/genética , Miocárdio/patologia , Axônios
2.
iScience ; 26(2): 105944, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36644320

RESUMO

Reliable, easy-to-handle phenotypic screening platforms are needed for the identification of anti-SARS-CoV-2 compounds. Here, we present caspase 3/7 activity as a readout for monitoring the replication of SARS-CoV-2 isolates from different variants, including a remdesivir-resistant strain, and of other coronaviruses in numerous cell culture models, independently of cytopathogenic effect formation. Compared to other models, the Caco-2 subline Caco-2-F03 displayed superior performance. It possesses a stable SARS-CoV-2 susceptibility phenotype and does not produce false-positive hits due to drug-induced phospholipidosis. A proof-of-concept screen of 1,796 kinase inhibitors identified known and novel antiviral drug candidates including inhibitors of phosphoglycerate dehydrogenase (PHGDH), CDC like kinase 1 (CLK-1), and colony stimulating factor 1 receptor (CSF1R). The activity of the PHGDH inhibitor NCT-503 was further increased in combination with the hexokinase II (HK2) inhibitor 2-deoxy-D-glucose, which is in clinical development for COVID-19. In conclusion, caspase 3/7 activity detection in SARS-CoV-2-infected Caco-2-F03 cells provides a simple phenotypic high-throughput screening platform for SARS-CoV-2 drug candidates that reduces false-positive hits.

3.
FEBS Lett ; 596(5): 638-654, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34787896

RESUMO

Cardiac fibroblasts constitute a major cell population in the heart. They secrete extracellular matrix components and various other factors shaping the microenvironment of the heart. In silico analysis of intercellular communication based on single-cell RNA sequencing revealed that fibroblasts are the source of the majority of outgoing signals to other cell types. This observation suggests that fibroblasts play key roles in orchestrating cellular interactions that maintain organ homeostasis but that can also contribute to disease states. Here, we will review the current knowledge of fibroblast interactions in the healthy, diseased, and aging heart. We focus on the interactions that fibroblasts establish with other cells of the heart, specifically cardiomyocytes, endothelial cells and immune cells, and particularly those relying on paracrine, electrical, and exosomal communication modes.


Assuntos
Células Endoteliais , Fibroblastos , Comunicação Celular , Fibroblastos/metabolismo , Miócitos Cardíacos/metabolismo
4.
Nat Neurosci ; 24(11): 1522-1533, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34675436

RESUMO

Coronavirus disease 2019 (COVID-19) can damage cerebral small vessels and cause neurological symptoms. Here we describe structural changes in cerebral small vessels of patients with COVID-19 and elucidate potential mechanisms underlying the vascular pathology. In brains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals and animal models, we found an increased number of empty basement membrane tubes, so-called string vessels representing remnants of lost capillaries. We obtained evidence that brain endothelial cells are infected and that the main protease of SARS-CoV-2 (Mpro) cleaves NEMO, the essential modulator of nuclear factor-κB. By ablating NEMO, Mpro induces the death of human brain endothelial cells and the occurrence of string vessels in mice. Deletion of receptor-interacting protein kinase (RIPK) 3, a mediator of regulated cell death, blocks the vessel rarefaction and disruption of the blood-brain barrier due to NEMO ablation. Importantly, a pharmacological inhibitor of RIPK signaling prevented the Mpro-induced microvascular pathology. Our data suggest RIPK as a potential therapeutic target to treat the neuropathology of COVID-19.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Proteases 3C de Coronavírus/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microvasos/metabolismo , SARS-CoV-2/metabolismo , Animais , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Chlorocebus aethiops , Proteases 3C de Coronavírus/genética , Cricetinae , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microvasos/patologia , SARS-CoV-2/genética , Células Vero
5.
Curr Issues Mol Biol ; 43(3): 1212-1225, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34698067

RESUMO

The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected individuals develops severe, life-threatening disease, which is caused by an uncontrolled immune response resulting in hyperinflammation. However, the factors predisposing individuals to severe disease remain poorly understood. Here, we show that levels of CD47, which is known to mediate immune escape in cancer and virus-infected cells, are elevated in SARS-CoV-2-infected Caco-2 cells, Calu-3 cells, and air-liquid interface cultures of primary human bronchial epithelial cells. Moreover, SARS-CoV-2 infection increases SIRPalpha levels, the binding partner of CD47, on primary human monocytes. Systematic literature searches further indicated that known risk factors such as older age and diabetes are associated with increased CD47 levels. High CD47 levels contribute to vascular disease, vasoconstriction, and hypertension, conditions that may predispose SARS-CoV-2-infected individuals to COVID-19-related complications such as pulmonary hypertension, lung fibrosis, myocardial injury, stroke, and acute kidney injury. Hence, age-related and virus-induced CD47 expression is a candidate mechanism potentially contributing to severe COVID-19, as well as a therapeutic target, which may be addressed by antibodies and small molecules. Further research will be needed to investigate the potential involvement of CD47 and SIRPalpha in COVID-19 pathology. Our data should encourage other research groups to consider the potential relevance of the CD47/ SIRPalpha axis in their COVID-19 research.


Assuntos
Antígenos de Diferenciação/metabolismo , Antígeno CD47/metabolismo , COVID-19/epidemiologia , COVID-19/metabolismo , Pandemias , Receptores Imunológicos/metabolismo , SARS-CoV-2/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais/imunologia , Doadores de Sangue , Western Blotting/métodos , Brônquios/citologia , COVID-19/patologia , COVID-19/virologia , Células CACO-2 , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Voluntários Saudáveis , Humanos , Monócitos/metabolismo , Monócitos/virologia , Reação em Cadeia da Polimerase/métodos , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
7.
Basic Res Cardiol ; 116(1): 42, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34224022

RESUMO

Coronavirus disease 2019 (COVID-19) spawned a global health crisis in late 2019 and is caused by the novel coronavirus SARS-CoV-2. SARS-CoV-2 infection can lead to elevated markers of endothelial dysfunction associated with higher risk of mortality. It is unclear whether endothelial dysfunction is caused by direct infection of endothelial cells or is mainly secondary to inflammation. Here, we investigate whether different types of endothelial cells are susceptible to SARS-CoV-2. Human endothelial cells from different vascular beds including umbilical vein endothelial cells, coronary artery endothelial cells (HCAEC), cardiac and lung microvascular endothelial cells, or pulmonary arterial cells were inoculated in vitro with SARS-CoV-2. Viral spike protein was only detected in HCAECs after SARS-CoV-2 infection but not in the other endothelial cells tested. Consistently, only HCAEC expressed the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2), required for virus infection. Infection with the SARS-CoV-2 variants B.1.1.7, B.1.351, and P.2 resulted in significantly higher levels of viral spike protein. Despite this, no intracellular double-stranded viral RNA was detected and the supernatant did not contain infectious virus. Analysis of the cellular distribution of the spike protein revealed that it co-localized with endosomal calnexin. SARS-CoV-2 infection did induce the ER stress gene EDEM1, which is responsible for clearance of misfolded proteins from the ER. Whereas the wild type of SARS-CoV-2 did not induce cytotoxic or pro-inflammatory effects, the variant B.1.1.7 reduced the HCAEC cell number. Of the different tested endothelial cells, HCAECs showed highest viral uptake but did not promote virus replication. Effects on cell number were only observed after infection with the variant B.1.1.7, suggesting that endothelial protection may be particularly important in patients infected with this variant.


Assuntos
Retículo Endoplasmático/virologia , Células Endoteliais/virologia , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/metabolismo , Calnexina/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Células Endoteliais/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Membrana/metabolismo , Receptores Virais/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
8.
Cardiovasc Res ; 116(14): 2207-2215, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32966582

RESUMO

AIMS: Coronavirus disease 2019 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has emerged as a global pandemic. SARS-CoV-2 infection can lead to elevated markers of cardiac injury associated with higher risk of mortality. It is unclear whether cardiac injury is caused by direct infection of cardiomyocytes or is mainly secondary to lung injury and inflammation. Here, we investigate whether cardiomyocytes are permissive for SARS-CoV-2 infection. METHODS AND RESULTS: Two strains of SARS-CoV-2 infected human induced pluripotent stem cell-derived cardiomyocytes as demonstrated by detection of intracellular double-stranded viral RNA and viral spike glycoprotein expression. Increasing concentrations of viral RNA are detected in supernatants of infected cardiomyocytes, which induced infections in Caco-2 cell lines, documenting productive infections. SARS-CoV-2 infection and induced cytotoxic and proapoptotic effects associated with it abolished cardiomyocyte beating. RNA sequencing confirmed a transcriptional response to viral infection as demonstrated by the up-regulation of genes associated with pathways related to viral response and interferon signalling, apoptosis, and reactive oxygen stress. SARS-CoV-2 infection and cardiotoxicity was confirmed in a 3D cardiosphere tissue model. Importantly, viral spike protein and viral particles were detected in living human heart slices after infection with SARS-CoV-2. Coronavirus particles were further observed in cardiomyocytes of a patient with coronavirus disease 2019. Infection of induced pluripotent stem cell-derived cardiomyocytes was dependent on cathepsins and angiotensin-converting enzyme 2, and was blocked by remdesivir. CONCLUSION: This study demonstrates that SARS-CoV-2 infects cardiomyocytes in vitro in an angiotensin-converting enzyme 2- and cathepsin-dependent manner. SARS-CoV-2 infection of cardiomyocytes is inhibited by the antiviral drug remdesivir.


Assuntos
Apoptose , COVID-19/virologia , Cardiopatias/virologia , Miócitos Cardíacos/virologia , SARS-CoV-2/patogenicidade , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/farmacologia , Apoptose/efeitos dos fármacos , COVID-19/metabolismo , COVID-19/patologia , Células CACO-2 , Catepsinas/metabolismo , Cardiopatias/tratamento farmacológico , Cardiopatias/metabolismo , Cardiopatias/patologia , Interações Hospedeiro-Patógeno , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , SARS-CoV-2/efeitos dos fármacos , Transdução de Sinais , Tratamento Farmacológico da COVID-19
9.
J Mol Cell Cardiol ; 138: 136-146, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31783034

RESUMO

Communication between cells is an important, evolutionarily conserved mechanism which enables the coordinated function of multicellular organisms. Heterogeneity within cell populations drive a remarkable network of cellular cross-talk that allows the heart to function as an integrated unit with distinct tasks allocated to sub-specialized cells. During diseases and aging, cells acquire an overt disordered state that significantly contributes to an altered cellular cross-talk and hence drive cardiac remodeling processes and cardiovascular diseases. However, adaptive mechanisms, and phenotypic changes in subpopulations of cells (e.g. reparative macrophages or fibroblasts) can also contribute to repair and regeneration. In this article, we review the cellular cross-talks between immune cells, endothelial cells, fibroblasts and cardiomyocytes that control heart failure by contributing to cardiac dysfunction and aging, or by mediating repair and regeneration of the heart after injury.


Assuntos
Envelhecimento/patologia , Células/metabolismo , Miocárdio/patologia , Animais , Humanos , Inflamação/patologia , Regeneração
10.
Arterioscler Thromb Vasc Biol ; 38(5): 1170-1177, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29599141

RESUMO

OBJECTIVE: Endothelial cells play important roles in tissue homeostasis and vascularization, a function that is impaired by aging. Here, we aim to decipher the role of the microenvironment underlying the impairment of endothelial cell functions by aging. APPROACH AND RESULTS: RNA sequencing of isolated cardiac endothelial cells derived from young and 18-month-old mouse hearts revealed that aging affects the endothelial expression of genes encoding extracellular matrix proteins, specifically the laminin ß1 (Lamb1) and laminin ß2 (Lamb2) chains. Whereas Lamb1 was upregulated, Lamb2 was decreased in endothelial cells in old mice compared with young controls. A similar change in expression patterns was observed after induction of acute myocardial infarction. Mimicking aging and injury conditions by plating endothelial cells on laminin ß1-containing laminin 411 matrix impaired endothelial cell adhesion, migration, and tube formation and augmented endothelial-to-mesenchymal transition and endothelial detachment compared with laminin 421, which contains the laminin ß2 chain. Because laminins can signal via integrin receptors, we determined the activation of ITGB1 (integrin ß1). Laminin 421 coating induced a higher activation of ITGB1 compared with laminin 411. siRNA-mediated silencing of ITGB1 reduced laminin ß2-dependent adhesion, suggesting that laminin ß2 more efficiently activates ITGB1. CONCLUSIONS: Mimicking age-related modulation of laminin ß1 versus ß2 chain expression changes the functional properties and phenotype of endothelial cells. The dysregulation of the extracellular matrix during vascular aging may contribute to age-associated impairment of organ function and fibrosis.


Assuntos
Envelhecimento/metabolismo , Células Endoteliais/metabolismo , Laminina/metabolismo , Neovascularização Fisiológica , Fatores Etários , Envelhecimento/genética , Animais , Adesão Celular , Movimento Celular , Proliferação de Células , Separação Celular/métodos , Células Cultivadas , Microambiente Celular , Modelos Animais de Doenças , Células Endoteliais/patologia , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Integrina beta1/metabolismo , Laminina/genética , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Fenótipo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...