Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(6): A12-A24, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36821295

RESUMO

The design, validation, and application of a quantum-cascade-laser-absorption-spectroscopy diagnostic for measuring gas temperature, pressure, and nitric oxide (NO) in high-temperature air are presented. A distributed-feedback quantum-cascade laser (QCL) centered near 1976c m -1 was used to scan across two transitions of NO in its ground electronic state (X 2 Π 1/2). A measurement rate of 500 kHz was achieved using a single QCL by: (1) performing current modulation through a bias-tee, and (2) targeting closely spaced transitions with a large difference in lower-state energy. The diagnostic was validated in a mixture of 95% argon and 5% NO, which was shock-heated to ≈2000 to 3700 K. The average mean percent differences between laser-absorption-spectroscopy (LAS) measurements and predictions from shock-jump relations for temperature, pressure, and NO mole fraction were 3.1%, 4.1%, and 6.5%, respectively. The diagnostic was then applied to characterize shock-heated air at high temperatures (up to ≈5500K) and high pressures (up to 12 atm) behind either incident or reflected shocks. The LAS measurements were compared to theoretical predictions from shock-jump relations, pressure sensors mounted in the wall of the shock tube, and equilibrium values of the NO mole fraction. The average mean percent differences between LAS measurements and their aforementioned reference values were 3.2%, 10.8%, and 10.4% for temperature, pressure, and NO mole fraction, respectively. Last, a comparison between a measured NO mole fraction time history and a time-stepped homogeneous reactor simulation performed using two different chemical kinetics mechanisms is presented.

2.
Phys Rev E ; 102(1-1): 013310, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32795082

RESUMO

Blood flowing through microvascular bifurcations has been an active research topic for many decades, while the partitioning pattern of nanoscale solutes in the blood remains relatively unexplored. Here we demonstrate a multiscale computational framework for direct numerical simulation of the nanoparticle (NP) partitioning through physiologically relevant vascular bifurcations in the presence of red blood cells (RBCs). The computational framework is established by embedding a particulate suspension inflow-outflow boundary condition into a multiscale blood flow solver. The computational framework is verified by recovering a tubular blood flow without a bifurcation and validated against the experimental measurement of an intravital bifurcation flow. The classic Zweifach-Fung (ZF) effect is shown to be well captured by the method. Moreover, we observe that NPs exhibit a ZF-like heterogeneous partition in response to the heterogeneous partition of the RBC phase. The NP partitioning prioritizes the high-flow-rate daughter branch except for extreme (large or small) suspension flow partition ratios under which the complete phase separation tends to occur. By analyzing the flow field and the particle trajectories, we show that the ZF-like heterogeneity in the NP partition can be explained by the RBC-entrainment effect caused by the deviation of the flow separatrix preceded by the tank treading of RBCs near the bifurcation junction. The recovery of homogeneity in the NP partition under extreme flow partition ratios is due to the plasma skimming of NPs in the cell-free layer. These findings, based on the multiscale computational framework, provide biophysical insights to the heterogeneous distribution of NPs in microvascular beds that are observed pathophysiologically.


Assuntos
Eritrócitos/metabolismo , Microvasos/metabolismo , Modelos Biológicos , Nanopartículas , Hemodinâmica , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA