Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 3075, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813822

RESUMO

In response to the SARS-CoV-2 pandemic, we developed a multiplexed, paired-pool droplet digital PCR (MP4) screening assay. Key features of our assay are the use of minimally processed saliva, 8-sample paired pools, and reverse-transcription droplet digital PCR (RT-ddPCR) targeting the SARS-CoV-2 nucleocapsid gene. The limit of detection was determined to be 2 and 12 copies per µl for individual and pooled samples, respectively. Using the MP4 assay, we routinely processed over 1,000 samples a day with a 24-h turnaround time and over the course of 17 months, screened over 250,000 saliva samples. Modeling studies showed that the efficiency of 8-sample pools was reduced with increased viral prevalence and that this could be mitigated by using 4-sample pools. We also present a strategy for, and modeling data supporting, the creation of a third paired pool as an additional strategy to employ under high viral prevalence.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Saliva/química , RNA Viral/genética , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Teste para COVID-19
3.
J Biol Chem ; 298(4): 101834, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35304100

RESUMO

Chronic wasting disease (CWD) is an invariably fatal prion disease affecting cervid species worldwide. Prions can manifest as distinct strains that can influence disease pathology and transmission. CWD is profoundly lymphotropic, and most infected cervids likely shed peripheral prions replicated in lymphoid organs. However, CWD is a neurodegenerative disease, and most research on prion strains has focused on neurogenic prions. Thus, a knowledge gap exists comparing neurogenic prions to lymphogenic prions. In this study, we compared prions from the obex and lymph nodes of naturally exposed white-tailed deer to identify potential biochemical strain differences. Here, we report biochemical evidence of strain differences between the brain and lymph node from these animals. Conformational stability assays, glycoform ratio analyses, and immunoreactivity scanning across the structured domain of the prion protein that refolds into the amyloid aggregate of the infectious prion reveal significantly more structural and glycoform variation in lymphogenic prions than neurogenic prions. Surprisingly, we observed greater biochemical differences among neurogenic prions than lymphogenic prions across individuals. We propose that the lymphoreticular system propagates a diverse array of prions from which the brain selects a more restricted pool of prions that may be quite different than those from another individual of the same species. Future work should examine the biological and zoonotic impact of these biochemical differences and examine more cervids from multiple locations to determine if these differences are conserved across species and locations.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Príons/química , Príons/metabolismo , Doença de Emaciação Crônica/fisiopatologia
4.
Mar Environ Res ; 154: 104849, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32056704

RESUMO

Mussels are ecologically important organisms that can survive in subtidal and intertidal zones where they experience thermal stress. We know little about how mussels from different tidal habitats respond to thermal stress. We used the mussel Mytilus galloprovincialis from separate subtidal and intertidal populations to test whether heart rate and indicators of potential aerobic (citrate synthase activity) and anaerobic (cytosolic malate dehydrogenase activity) metabolic capacity are affected by increased temperatures while exposed to air or submerged in water. Subtidal mussels were affected by warming when submerged in water (decreased heart rate) but showed no effect in air. In contrast, intertidal mussels were affected by exposure to air (increased anaerobic capacity) but not by warming. Overall, physiological responses of mussels to thermal stress were dependent on their tidal habitat. These results highlight the importance of considering the natural habitat of mussels when assessing their responses to environmental challenges.


Assuntos
Ecossistema , Temperatura Alta , Mytilus , Estresse Fisiológico , Animais , Espécies Introduzidas , Mytilus/fisiologia , Água/química
5.
PLoS One ; 14(7): e0219995, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31329627

RESUMO

Prion diseases are members of neurodegenerative protein misfolding diseases (NPMDs) that include Alzheimer's, Parkinson's and Huntington diseases, amyotrophic lateral sclerosis, tauopathies, traumatic brain injuries, and chronic traumatic encephalopathies. No known therapeutics extend survival or improve quality of life of humans afflicted with prion disease. We and others developed a new approach to NPMD therapy based on reducing the amount of the normal, host-encoded protein available as substrate for misfolding into pathologic forms, using RNA interference, a catabolic pathway that decreases levels of mRNA encoding a particular protein. We developed a therapeutic delivery system consisting of small interfering RNA (siRNA) complexed to liposomes and addressed to the central nervous system using a targeting peptide derived from rabies virus glycoprotein. These liposome-siRNA-peptide complexes (LSPCs) cross the blood-brain barrier and deliver PrP siRNA to neuronal cells to decrease expression of the normal cellular prion protein, PrPC, which acts as a substrate for prion replication. Here we show that LSPCs can extend survival and improve behavior of prion-infected mice that remain immunotolerant to treatment. LSPC treatment may be a viable therapy for prion and other NPMDs that can improve the quality of life of patients at terminal disease stages.


Assuntos
Lipossomos/metabolismo , Proteínas PrPC/genética , Doenças Priônicas/terapia , Terapêutica com RNAi/métodos , Animais , Antígenos Virais/química , Antígenos Virais/metabolismo , Barreira Hematoencefálica/metabolismo , Feminino , Lipossomos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas PrPC/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
6.
Viruses ; 11(3)2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909389

RESUMO

Syrian hamsters (Mesocricetus auratus) are a pathogenesis model for the Nipah virus (NiV), and we sought to determine if they are also susceptible to the Cedar virus (CedPV). Following intranasal inoculation with CedPV, virus replication occurred in the lungs and spleens of infected hamsters, a neutralizing antibody was produced in some hamsters within 8 days post-challenge, and no conspicuous signs of disease occurred. CedPV replicated to a similar magnitude as NiV-Bangladesh in type I IFN-deficient BHK-21 Syrian hamster fibroblasts but replicated 4 logs lower in type I IFN-competent primary Syrian hamster and human pulmonary endothelial cells, a principal target of henipaviruses. The coinfection of these cells with CedPV and NiV failed to rescue CedPV titers and did not diminish NiV titers, suggesting the replication machinery is virus-specific. Type I IFN response transcripts Ifna7, Ddx58, Stat1, Stat2, Ccl5, Cxcl10, Isg20, Irf7, and Iigp1 were all significantly elevated in CedPV-infected hamster endothelial cells, whereas Ifna7 and Iigp1 expression were significantly repressed during NiV infection. These results are consistent with the hypothesis that CedPV's inability to counter the host type I IFN response may, in part, contribute to its lack of pathogenicity. Because NiV causes a fatal disease in Syrian hamsters with similarities to human disease, this model will provide valuable information about the pathogenic mechanisms of henipaviruses.


Assuntos
Infecções por Henipavirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Replicação Viral , Animais , Coinfecção/imunologia , Coinfecção/virologia , Cricetinae , Células Endoteliais/imunologia , Células Endoteliais/virologia , Feminino , Henipavirus/patogenicidade , Henipavirus/fisiologia , Humanos , Pulmão/virologia , Vírus Nipah/patogenicidade , Vírus Nipah/fisiologia , Baço/virologia
7.
PLoS Negl Trop Dis ; 13(2): e0007071, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716104

RESUMO

The emergence of Zika virus (ZIKV) in the New World has led to more than 200,000 human infections. Perinatal infection can cause severe neurological complications, including fetal and neonatal microcephaly, and in adults there is an association with Guillain-Barré syndrome (GBS). ZIKV is transmitted to humans by Aedes sp. mosquitoes, yet little is known about its enzootic cycle in which transmission is thought to occur between arboreal Aedes sp. mosquitos and non-human primates. In the 1950s and '60s, several bat species were shown to be naturally and experimentally susceptible to ZIKV with acute viremia and seroconversion, and some developed neurological disease with viral antigen detected in the brain. Because of ZIKV emergence in the Americas, we sought to determine susceptibility of Jamaican fruit bats (Artibeus jamaicensis), one of the most common bats in the New World. Bats were inoculated with ZIKV PRVABC59 but did not show signs of disease. Bats held to 28 days post-inoculation (PI) had detectable antibody by ELISA and viral RNA was detected by qRT-PCR in the brain, saliva and urine in some of the bats. Immunoreactivity using polyclonal anti-ZIKV antibody was detected in testes, brain, lung and salivary glands plus scrotal skin. Tropism for mononuclear cells, including macrophages/microglia and fibroblasts, was seen in the aforementioned organs in addition to testicular Leydig cells. The virus likely localized to the brain via infection of Iba1+ macrophage/microglial cells. Jamaican fruit bats, therefore, may be a useful animal model for the study of ZIKV infection. This work also raises the possibility that bats may have a role in Zika virus ecology in endemic regions, and that ZIKV may pose a wildlife disease threat to bat populations.


Assuntos
Encéfalo/virologia , Quirópteros/virologia , RNA Viral/isolamento & purificação , Infecção por Zika virus/veterinária , Zika virus/fisiologia , Animais , Masculino , RNA Viral/urina , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...