Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Curr Protoc ; 3(11): e936, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37933574

RESUMO

Understanding the structure and function of key proteins located within biological membranes is essential for fundamental knowledge and therapeutic applications. Robust cell systems allowing their actual overexpression are required, among which stands the methylotrophic yeast Pichia pastoris. This system proves highly efficient in producing many eukaryotic membrane proteins of various functions and structures at levels and quality compatible with their subsequent isolation and molecular investigation. This article describes a set of basic guidelines and directions to clone and select recombinant P. pastoris clones overexpressing eukaryotic membrane proteins. Illustrative results obtained for a panel of mammalian membrane proteins are presented, and hints are given on a series of experimental parameters that may substantially improve the amount and/or the functionality of the expressed proteins. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Designing and cloning a P. pastoris expression vector Basic Protocol 2: Integrative transformation of P. pastoris and selection of recombinant clones Basic Protocol 3: Culturing transformed P. pastoris for membrane protein expression Basic Protocol 4: Yeast cell lysis and membrane preparation Basic Protocol 5: Immunodetection of expressed membrane proteins: western blot Alternate Protocol 1: Immunodetection of expressed membrane proteins: dot blot Alternate Protocol 2: Immunodetection of expressed membrane proteins: yeastern blot Basic Protocol 6: Activity assay: ligand-binding analysis of an expressed GPCR.


Assuntos
Proteínas de Membrana , Pichia , Animais , Pichia/genética , Pichia/metabolismo , Clonagem Molecular , Mamíferos/metabolismo
2.
Molecules ; 28(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894592

RESUMO

The identification of weak-affinity ligands targeting membrane proteins is of great interest in Fragment-Based Drug Design (FBDD). Recently, miniaturized weak affinity chromatography (WAC) has been proposed as a valuable tool to study interactions between small ligands and wild-type membrane proteins embedded in so-called nanodisc biomimetic membranes immobilized on GMA-co-EDMA monoliths in situ-synthesized in capillary columns (less than one microliter in volume). In this proof-of-concept study, the achievable affinity range was limited to medium affinity (low micromolar range). The present work investigates different strategies to extend the affinity range towards low affinities, either by increasing the density of membrane proteins on the chromatographic support or by reducing non-specific interactions with the monolith. The combination of the use of a new and more hydrophilic monolithic support (poly(DHPMA-co-MBA)) and a multilayer nanodisc grafting process (up to three layers) allows a significant increase in the membrane protein density by a more than three-fold factor (up to 5.4 pmol cm-1). Such an increase in protein density associated with reduced non-specific interactions makes it possible to extend the range of detectable affinity, as demonstrated by the identification and characterization of affinities of very low-affinity ligands (Kd values of several hundred micromolar) for the adenosine receptor AA2AR used as a model protein, which was not possible before. The affinity was confirmed by competition experiments.


Assuntos
Proteínas de Membrana , Metilmetacrilatos , Cromatografia de Afinidade/métodos , Metilmetacrilatos/química , Desenho de Fármacos , Ligantes
3.
Anal Biochem ; 665: 115062, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731712

RESUMO

G protein-coupled receptor associated sorting protein 1 (GPRASP1) belongs to a family of 10 proteins that display sequence homologies in their C-terminal region. Several members including GPRASP1 also display a short repeated sequence called the GASP motif that is critically involved in protein-protein interactions with G protein-coupled receptors (GPCRs). Here, we characterized anti-GASP motif antibodies and investigated their potential inhibitory functions. We first showed that our in-house anti-GPRASP1 rabbit polyclonal serum contains anti-GASP motif antibodies and purified them by affinity chromatography. We further showed that these antibodies can detect GPRASP1 and GPRASP2 in Western blot, immunoprecipitation and immunofluorescence experiments while a mutant of GPRASP2, in which the most conserved hydrophobic core of the GASP motifs is mutated, was no more detected. Further characterization of anti-GASP motif antibodies by ELISA and Surface Plasmon Resonance assays suggests that GASP motifs function as multivalent epitopes. Finally, we set-up an Amplified Luminescent Proximity Homogeneous AlphaScreen® assay to detect the interaction between purified ADRB2 receptor and the central domain of GPRASP1 and showed that anti-GASP motif antibodies efficiently inhibit this interaction. Altogether, our results suggest that anti-GASP motif antibodies could represent a valuable tool to neutralize the interaction of GPRASP1 and GPRASP2 with different GPCRs.


Assuntos
Proteínas de Transporte , Receptores Acoplados a Proteínas G , Animais , Coelhos , Transporte Proteico/fisiologia
4.
Sci Adv ; 8(38): eabq8489, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36149965

RESUMO

We present the first structure of the human Kir2.1 channel containing both transmembrane domain (TMD) and cytoplasmic domain (CTD). Kir2.1 channels are strongly inward-rectifying potassium channels that play a key role in maintaining resting membrane potential. Their gating is modulated by phosphatidylinositol 4,5-bisphosphate (PIP2). Genetically inherited defects in Kir2.1 channels are responsible for several rare human diseases, including Andersen's syndrome. The structural analysis (cryo-electron microscopy), surface plasmon resonance, and electrophysiological experiments revealed a well-connected network of interactions between the PIP2-binding site and the G-loop through residues R312 and H221. In addition, molecular dynamics simulations and normal mode analysis showed the intrinsic tendency of the CTD to tether to the TMD and a movement of the secondary anionic binding site to the membrane even without PIP2. Our results revealed structural features unique to human Kir2.1 and provided insights into the connection between G-loop and gating and the pathological mechanisms associated with this channel.


Assuntos
Simulação de Dinâmica Molecular , Fosfatidilinositóis , Canais de Potássio Corretores do Fluxo de Internalização , Microscopia Crioeletrônica , Humanos , Potenciais da Membrana , Canais de Potássio Corretores do Fluxo de Internalização/química
5.
Methods Mol Biol ; 2550: 171-178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180690

RESUMO

A way to study G protein-coupled receptors in a minimal system is to reconstruct artificial membrane mimics, made of detergent and/or of lipids in which the purified receptor is maintained. In particular, it is now possible to generate lipid nanoparticles, such as nanodiscs, in which a single receptor molecule is included. Such objects offer the invaluable potential of studying an isolated receptor stabilized in a finely controlled membrane-like environment to evaluate its pharmacology, its function, and its structure at the molecular level. In this chapter, we detail the different steps from the extraction and isolation of a recombinant MT1 melatonin receptor in detergent, down to its reconstitution into nanodiscs. A G protein activation test is further described in order to exemplify how the functionality of such particles may be investigated.


Assuntos
Melatonina , Receptor MT1 de Melatonina , Detergentes/química , Proteínas de Ligação ao GTP/metabolismo , Lipídeos/química , Lipossomos , Membranas Artificiais , Nanopartículas , Receptor MT1 de Melatonina/genética , Receptor MT1 de Melatonina/metabolismo
6.
Methods Mol Biol ; 2507: 201-221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35773584

RESUMO

Membrane proteins (MPs) comprise about one-third of the human proteome, playing critical roles in many physiological processes and associated disorders. Consistently, they represent one of the largest classes of targets for the pharmaceutical industry. Their study at the molecular level is however particularly challenging, resulting in a severe lack of structural and dynamic information that is hindering their detailed functional characterization and the identification of novel potent drug candidates.Magic Angle Spinning (MAS) NMR is a reliable and efficient method for the determination of protein structures and dynamics and for the identification of ligand binding sites and equilibria. MAS-NMR is particularly well suited for MPs since they can be directly analysed in a native-like lipid bilayer environment but used to require aggravating large amounts of isotope enriched material. The frequent toxicity of human MP overexpression in bacterial cultures poses an additional hurdle, resulting in the need for alternative (and often more costly) expression systems. The recent development of very fast (up to 150 kHz) MAS probes has revolutionized the field of biomolecular solid-state NMR enabling higher spectral resolution with significant reduction of the required sample, rendering eukaryotic expression systems cost-effective.Here is presented a set of accessible procedures validated for the production and preparation of eukaryotic MPs for Fast-MAS 1H-detected NMR analysis. The methodology is illustrated with the human copper uptake protein hCTR1 recombinantly produced and 13C-15N uniformly labeled with the versatile and affordable Pichia pastoris system. Subsequent purification procedures allow the recovery of mg amounts that are then reconstituted into liposome formulations compatible with solid-state NMR handling and analysis.


Assuntos
Proteínas de Membrana , Saccharomycetales , Humanos , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Pichia/metabolismo
7.
Front Pharmacol ; 12: 712437, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447311

RESUMO

The growth hormone secretagogue receptor (GHSR) signals in response to ghrelin, but also acts via ligand-independent mechanisms that include either constitutive activation or interaction with other G protein-coupled receptors, such as the dopamine 2 receptor (D2R). A key target of GHSR in neurons is voltage-gated calcium channels type 2.2 (CaV2.2). Recently, the liver-expressed antimicrobial peptide 2 (LEAP2) was recognized as a novel GHSR ligand, but the mechanism of action of LEAP2 on GHSR is not well understood. Here, we investigated the role of LEAP2 on the canonical and non-canonical modes of action of GHSR on CaV2.2 function. Using a heterologous expression system and patch-clamp recordings, we found that LEAP2 impairs the reduction of CaV2.2 currents induced by ghrelin-evoked and constitutive GHSR activities, acting as a GHSR antagonist and inverse agonist, respectively. We also found that LEAP2 prevents GHSR from modulating the effects of D2R signaling on CaV2.2 currents, and that the GHSR-binding N-terminal region LEAP2 underlies these effects. Using purified labeled receptors assembled into lipid nanodiscs and Forster Resonance Energy Transfer (FRET) assessments, we found that the N-terminal region of LEAP2 stabilizes an inactive conformation of GHSR that is dissociated from Gq protein and, consequently, reverses the effect of GHSR on D2R-dependent Gi activation. Thus, our results provide critical molecular insights into the mechanism mediating LEAP2 modulation of GHSR.

8.
Anal Chim Acta ; 1113: 26-35, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32340666

RESUMO

Biophysical techniques that enable the screening and identification of weak affinity fragments against a target protein are at the heart of Fragment Based Drug Design approaches. In the case of membrane proteins, the crucial criteria for fragment screening are low protein consumption, unbiased conformational states and rapidity because of the difficulties in obtaining sufficient amounts of stable and functionally folded proteins. Here we show for the first time that lipid-nanodisc systems (membrane-mimicking environment) and miniaturized affinity chromatography can be combined to identify specific small molecule ligands that bind to an integral membrane protein. The approach was exemplified using the AA2AR GPCR. Home-made affinity nano-columns modified with nanodiscs-embedded AA2AR (only about 1 µg of protein per column) were fully characterized by frontal chromatographic experiments. This method allows (i) to distinguish specific and unspecific ligand/receptor interactions, (ii) to assess dissociation constants, (iii) to identify the binding pocket of uncharacterized ligands using a reference compound (whose binding site is known) with competition experiments. Weak affinity ligands with Kd in the low to high micromolar range can be detected. At last, the applicability of this method was demonstrated with 6 fragments recently identified as ligands or non-ligands of AA2AR.


Assuntos
Proteínas Imobilizadas/metabolismo , Nanopartículas/química , Compostos Orgânicos/análise , Receptor A2A de Adenosina/metabolismo , Cromatografia de Afinidade/métodos , Descoberta de Drogas , Humanos , Proteínas Imobilizadas/química , Ligantes , Membranas Artificiais , Compostos Orgânicos/metabolismo , Estudo de Prova de Conceito , Ligação Proteica , Receptor A2A de Adenosina/química
9.
Curr Protoc Protein Sci ; 100(1): e104, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32289210

RESUMO

Pichia pastoris is a eukaryotic microorganism reputed for its ability to mass-produce recombinant proteins, including integral membrane proteins, for various applications. This article details a series of protocols that progress towards the production of integral membrane proteins, their extraction and purification in the presence of detergents, and their eventual reconstitution in lipid nanoparticles. These basic procedures can be further optimized to provide integral membrane protein samples that are compatible with a number of structural and/or functional investigations at the molecular level. Each protocol provides general guidelines, technical hints, and specific recommendations, and is illustrated with case studies corresponding to several representative mammalian proteins. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Production of membrane proteins in a P. pastoris recombinant clone using methanol induction Basic Protocol 2: Preparation of whole-membrane fractions Alternate Protocol 1: Preparation of yeast protoplasts Basic Protocol 3: Extraction of membrane proteins from whole-membrane fractions Basic Protocol 4: Purification of membrane proteins Alternate Protocol 2: Purification of membrane proteins from yeast protoplasts Alternate Protocol 3: Simultaneous protoplast preparation and membrane solubilization for purification of membrane proteins Basic Protocol 5: Reconstitution of detergent-purified membrane proteins in lipid nanoparticles.


Assuntos
Lipídeos de Membrana , Proteínas de Membrana , Nanopartículas/química , Saccharomycetales , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo
10.
Protein Sci ; 28(10): 1865-1879, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31423659

RESUMO

In the continuous exploration of the VHH chemistry, biochemistry and therapeutic future use, we investigated two different production strategies of this small antibody-like protein, using an anti-HER2 VHH as a model. The total chemical synthesis of the 125 amino-acid peptide was performed with reasonable yield, even if optimization will be necessary to upgrade this kind of production. In parallel, we expressed the same sequence in two different hosts: Escherichia coli and Pichia pastoris. Both productions were successful and led to a fair amount of VHHs. The integrity and conformation of the VHH were characterized by complementary mass spectrometry approaches, while surface plasmon resonance experiments were used to assess the VHH recognition capacity and affinity toward its "antigen." Using this combination of orthogonal techniques, it was possible to show that the three VHHs-whether synthetic or recombinant ones-were properly and similarly folded and recognized the "antigen" HER2 with similar affinities, in the nanomolar range. This opens a route toward further exploration of modified VHH with unnatural amino acids and subsequently, VHH-drug conjugates.


Assuntos
Receptor ErbB-2/imunologia , Anticorpos de Domínio Único/imunologia , Animais , Humanos , Proteínas Recombinantes/imunologia
11.
Int J Mol Sci ; 20(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261773

RESUMO

Human ether-a-gogo related gene (hERG) product is the membrane potassium channel Kv11.1, which is involved in the electrical activity of the heart. As such, it is a key player in the toxicity of many drug candidates. Therefore, having this protein at hand during earlier stages of drug discovery is important for preventing later toxicity. Furthermore, having a fair quantity of functional channels may help in the development of the necessary techniques for gaining insight in this channel structure. Thus, we performed a comparative study of methods for over-expressing a mutated but functional, hERG in different orthologous hosts, such as yeast, bacteria, insect and human cell lines. We also engineered the protein to test various constructs of a functional channel. We obtained a significant amount of a functional mutant channel from HEK cells that we thoroughly characterized. The present work paves the way for the expression of large amounts of this protein, with which protein crystallization or cryo-electronic microscopy will be attempted. This will be a way to gain information on the structure of the hERG active site and its modelization to obtain data on the pauses of various reference compounds from the pharmacopeia, as well as to gain information about the thermodynamics of the hERG/ligand relationship.


Assuntos
Canal de Potássio ERG1/genética , Engenharia de Proteínas/métodos , Animais , Fracionamento Químico/métodos , Cristalografia por Raios X/métodos , Canal de Potássio ERG1/química , Canal de Potássio ERG1/metabolismo , Células HEK293 , Humanos , Pichia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Xenopus
12.
Proc Natl Acad Sci U S A ; 115(17): 4501-4506, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632174

RESUMO

The growth hormone secretagogue receptor (GHSR) and dopamine receptor (D2R) have been shown to oligomerize in hypothalamic neurons with a significant effect on dopamine signaling, but the molecular processes underlying this effect are still obscure. We used here the purified GHSR and D2R to establish that these two receptors assemble in a lipid environment as a tetrameric complex composed of two each of the receptors. This complex further recruits G proteins to give rise to an assembly with only two G protein trimers bound to a receptor tetramer. We further demonstrate that receptor heteromerization directly impacts on dopamine-mediated Gi protein activation by modulating the conformation of its α-subunit. Indeed, association to the purified GHSR:D2R heteromer triggers a different active conformation of Gαi that is linked to a higher rate of GTP binding and a faster dissociation from the heteromeric receptor. This is an additional mechanism to expand the repertoire of GPCR signaling modulation that could have implications for the control of dopamine signaling in normal and physiopathological conditions.


Assuntos
Dopamina/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Multimerização Proteica , Receptores de Dopamina D2/química , Receptores de Grelina/química , Transdução de Sinais , Dopamina/genética , Dopamina/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores de Grelina/genética , Receptores de Grelina/metabolismo
13.
Methods Mol Biol ; 1635: 45-56, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28755363

RESUMO

In the past decade, the methylotrophic yeast Pichia pastoris has proved to be one of the most efficient systems for mass production of recombinant eukaryotic membrane proteins (MPs), leading to the crystallization and structure determination for a variety of them. The actual overexpression of functional MPs achieved with this system is, however, often accompanied by the formation of a variable but significant proportion of misfolded and/or aggregated proteins that are co-extracted and co-purified during the purification process. In order to minimize this unwanted phenomenon, we devised a novel procedure in which MPs produced in Pichia pastoris are directly solubilized from whole cells instead of crude membrane preparation. This approach aims at favoring the extraction of correctly folded membrane proteins that have been targeted to the plasma membrane, limiting the solubilization of the misfolded proteins and protein aggregates that are stored in internal membrane compartments. The method described herewith is based on the formation of protoplasts through enzymatic treatment prior to protein solubilization. This chapter details a set of protocols going from yeast cell preparation and protein solubilization to purification using affinity and size exclusion chromatography.


Assuntos
Proteínas de Membrana/genética , Pichia/citologia , Protoplastos/metabolismo , Proteínas Recombinantes/isolamento & purificação , Cromatografia de Afinidade , Cromatografia em Gel , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Pichia/genética , Pichia/crescimento & desenvolvimento , Conformação Proteica , Engenharia de Proteínas , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
14.
Sci Rep ; 7: 41751, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176812

RESUMO

Most membrane proteins studies require the use of detergents, but because of the lack of a general, accurate and rapid method to quantify them, many uncertainties remain that hamper proper functional and structural data analyses. To solve this problem, we propose a method based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) that allows quantification of pure or mixed detergents in complex with membrane proteins. We validated the method with a wide variety of detergents and membrane proteins. We automated the process, thereby allowing routine quantification for a broad spectrum of usage. As a first illustration, we show how to obtain information of the amount of detergent in complex with a membrane protein, essential for liposome or nanodiscs reconstitutions. Thanks to the method, we also show how to reliably and easily estimate the detergent corona diameter and select the smallest size, critical for favoring protein-protein contacts and triggering/promoting membrane protein crystallization, and to visualize the detergent belt for Cryo-EM studies.


Assuntos
Detergentes/química , Proteínas de Membrana/química , Detergentes/metabolismo , Lipossomos , Proteínas de Membrana/metabolismo , Micelas , Modelos Moleculares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/normas
15.
Methods Mol Biol ; 1432: 143-62, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27485335

RESUMO

A key point when it comes to heterologous expression of eukaryotic membrane proteins (EMPs) is the choice of the best-suited expression platform. The yeast Pichia pastoris has proven to be a very versatile system showing promising results in a growing number of cases. Indeed, its particular methylotrophic characteristics combined to the very simple handling of a eukaryotic microorganism that possesses the majority of mammalian-like machineries make it a very competitive expression system for various complex proteins, in amounts compatible with functional and structural studies. This chapter describes a set of robust methodologies routinely used for the successful expression of a variety of EMPs, going from yeast transformation with the recombinant plasmid to the analysis of the quality and quantity of the proteins produced.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pichia/crescimento & desenvolvimento , Clonagem Molecular , Células Eucarióticas/metabolismo , Pichia/genética , Plasmídeos/genética , Engenharia de Proteínas , Proteínas Recombinantes/metabolismo , Transformação Genética
16.
PLoS One ; 11(4): e0150658, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27035823

RESUMO

Long-term functional stability of isolated membrane proteins is crucial for many in vitro applications used to elucidate molecular mechanisms, and used for drug screening platforms in modern pharmaceutical industry. Compared to soluble proteins, the understanding at the molecular level of membrane proteins remains a challenge. This is partly due to the difficulty to isolate and simultaneously maintain their structural and functional stability, because of their hydrophobic nature. Here we show, how scintillation proximity assay can be used to analyze time-resolved high-affinity ligand binding to membrane proteins solubilized in various environments. The assay was used to establish conditions that preserved the biological function of isolated human kappa opioid receptor. In detergent solution the receptor lost high-affinity ligand binding to a radiolabelled ligand within minutes at room temperature. After reconstitution in Nanodiscs made of phospholipid bilayer the half-life of high-affinity ligand binding to the majority of receptors increased 70-fold compared to detergent solubilized receptors--a level of stability that is appropriate for further downstream applications. Time-resolved scintillation proximity assay has the potential to screen numerous conditions in parallel to obtain high levels of stable and active membrane proteins, which are intrinsically unstable in detergent solution, and with minimum material consumption.


Assuntos
Bicamadas Lipídicas/química , Nanoestruturas/química , Receptores Opioides kappa/química , Receptores Opioides kappa/metabolismo , Detergentes/química , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Humanos , Ligantes , Bicamadas Lipídicas/metabolismo , Pichia/genética , Ligação Proteica , Estabilidade Proteica , Receptores Opioides kappa/genética , Receptores Opioides kappa/isolamento & purificação , Solubilidade
17.
Biochemistry ; 55(1): 38-48, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26701065

RESUMO

G protein-coupled receptors (GPCRs) are integral membrane proteins that play a pivotal role in signal transduction. Understanding their dynamics is absolutely required to get a clear picture of how signaling proceeds. Molecular characterization of GPCRs isolated in detergents nevertheless stumbles over the deleterious effect of these compounds on receptor function and stability. We explored here the potential of a styrene-maleic acid polymer to solubilize receptors directly from their lipid environment. To this end, we used two GPCRs, the melatonin and ghrelin receptors, embedded in two membrane systems of increasing complexity, liposomes and membranes from Pichia pastoris. The styrene-maleic acid polymer was able, in both cases, to extract membrane patches of a well-defined size. GPCRs in SMA-stabilized lipid discs not only recognized their ligand but also transmitted a signal, as evidenced by their ability to activate their cognate G proteins and recruit arrestins in an agonist-dependent manner. Besides, the purified receptor in lipid discs undergoes all specific changes in conformation associated with ligand-mediated activation, as demonstrated in the case of the ghrelin receptor with fluorescent conformational reporters and compounds from distinct pharmacological classes. Altogether, these data highlight the potential of styrene-maleic stabilized lipid discs for analyzing the molecular bases of GPCR-mediated signaling in a well-controlled membrane-like environment.


Assuntos
Proteínas de Ligação ao GTP/isolamento & purificação , Lipídeos/química , Lipossomos/química , Maleatos/química , Nanoestruturas/química , Poliestirenos/química , Animais , Células CHO , Cricetulus , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Pichia/química , Pichia/metabolismo , Receptores de Grelina/química , Receptores de Grelina/isolamento & purificação , Receptores de Grelina/metabolismo , Receptores de Melatonina/química , Receptores de Melatonina/isolamento & purificação , Receptores de Melatonina/metabolismo , Solubilidade
18.
PLoS One ; 9(6): e100616, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24959712

RESUMO

The human melatonin MT1 receptor-belonging to the large family of G protein-coupled receptors (GPCRs)-plays a key role in circadian rhythm regulation and is notably involved in sleep disorders and depression. Structural and functional information at the molecular level are highly desired for fine characterization of this receptor; however, adequate techniques for isolating soluble MT1 material suitable for biochemical and biophysical studies remain lacking. Here we describe the evaluation of a panel of constructs and host systems for the production of recombinant human MT1 receptors, and the screening of different conditions for their solubilization and purification. Our findings resulted in the establishment of an original strategy using a mixture of Fos14 and CHAPS detergents to extract and purify a recombinant human MT1 from Pichia pastoris membranes. This procedure enabled the recovery of relatively pure, monomeric and ligand-binding active MT1 receptor in the near-milligram range. A comparative study based on extensive ligand-binding characterization highlighted a very close correlation between the pharmacological profiles of MT1 purified from yeast and the same receptor present in mammalian cell membranes. The high quality of the purified MT1 was further confirmed by its ability to activate its cognate Gαi protein partner when reconstituted in lipid discs, thus opening novel paths to investigate this receptor by biochemical and biophysical approaches.


Assuntos
Membrana Celular/metabolismo , Receptor MT1 de Melatonina/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Células CHO , Linhagem Celular , Membrana Celular/química , Cricetulus , Detergentes/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Ligantes , Ligação Proteica , Receptor MT1 de Melatonina/química , Receptor MT1 de Melatonina/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Leveduras/genética , Leveduras/metabolismo
19.
J Virol Methods ; 193(2): 647-52, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23933080

RESUMO

Virus titration may constitute a drawback in the development and use of replication-defective viral vectors like Semliki Forest virus (SFV). The standardization and validation of a reverse transcription quantitative PCR (qRT-PCR) method for SFV titration is presented here. The qRT-PCR target is located within the nsp1 gene of the non-structural polyprotein SFV region (SFV RNA), which allows the strategy to be used for several different recombinant SFV constructs. Titer determinations were carried out by performing virus titration and infection assays with SFVs containing an RNA coding region for the rabies virus glycoprotein (RVGP) or green fluorescent protein (GFP). Results showed that the standardized qRT-PCR is applicable for different SFV constructs, and showed good reproducibility. To evaluate the correlation between the amount of functional SFV RNA in a virus lot and its infectivity in BHK-21 cell cultures, a temperature mediated titer decrease was performed and successfully quantitated by qRT-PCR. When used for cell infection at the same multiplicity of infection (MOI), the temperature treated SFV-RVGP samples induced the same levels of RVGP expression. Similarly, when different SFV-GFP lots with different virus titers, as accessed by qRT-PCR, were used for cell infection at the same MOI, the cultures showed comparable amounts of fluorescent cells. The data demonstrate a good correlation between the amount of virus used for infection, as measured by its SFV RNA, and the protein synthesis in the cells. In conclusion, the qRT-PCR method developed here is accurate and enables the titration of replication-defective SFV vectors, an essential aid for viral vector development as well as for establishment of production bioprocesses.


Assuntos
Vírus Defeituosos/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Vírus da Floresta de Semliki/isolamento & purificação , Carga Viral/métodos , Animais , Linhagem Celular , Cricetinae , Vírus Defeituosos/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Reprodutibilidade dos Testes , Vírus da Floresta de Semliki/genética , Proteínas não Estruturais Virais/genética , Cultura de Vírus
20.
PLoS One ; 8(2): e56336, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23441177

RESUMO

GPCR desensitization and down-regulation are considered key molecular events underlying the development of tolerance in vivo. Among the many regulatory proteins that are involved in these complex processes, GASP-1 have been shown to participate to the sorting of several receptors toward the degradation pathway. This protein belongs to the recently identified GPCR-associated sorting proteins (GASPs) family that comprises ten members for which structural and functional details are poorly documented. We present here a detailed structure-function relationship analysis of the molecular interaction between GASPs and a panel of GPCRs. In a first step, GST-pull down experiments revealed that all the tested GASPs display significant interactions with a wide range of GPCRs. Importantly, the different GASP members exhibiting the strongest interaction properties were also characterized by the presence of a small, highly conserved and repeated "GASP motif" of 15 amino acids. We further showed using GST-pull down, surface plasmon resonance and co-immunoprecipitation experiments that the central domain of GASP-1, which contains 22 GASP motifs, is essential for the interaction with GPCRs. We then used site directed mutagenesis and competition experiments with synthetic peptides to demonstrate that the GASP motif, and particularly its highly conserved core sequence SWFW, is critically involved in the interaction with GPCRs. Overall, our data show that several members of the GASP family interact with GPCRs and highlight the presence within GASPs of a novel protein-protein interaction motif that might represent a new target to investigate the involvement of GASPs in the modulation of the activity of GPCRs.


Assuntos
Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular , Humanos , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Receptores Acoplados a Proteínas G/química , Proteínas de Transporte Vesicular/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...