Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Pharmaceutics ; 16(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38399219

RESUMO

The repertoire of currently available antiviral drugs spans therapeutic applications against a number of important human pathogens distributed worldwide. These include cases of the pandemic severe acute respiratory coronavirus type 2 (SARS-CoV-2 or COVID-19), human immunodeficiency virus type 1 (HIV-1 or AIDS), and the pregnancy- and posttransplant-relevant human cytomegalovirus (HCMV). In almost all cases, approved therapies are based on direct-acting antivirals (DAAs), but their benefit, particularly in long-term applications, is often limited by the induction of viral drug resistance or side effects. These issues might be addressed by the additional use of host-directed antivirals (HDAs). As a strong input from long-term experiences with cancer therapies, host protein kinases may serve as HDA targets of mechanistically new antiviral drugs. The study demonstrates such a novel antiviral strategy by targeting the major virus-supportive host kinase CDK7. Importantly, this strategy focuses on highly selective, 3D structure-derived CDK7 inhibitors carrying a warhead moiety that mediates covalent target binding. In summary, the main experimental findings of this study are as follows: (1) the in vitro verification of CDK7 inhibition and selectivity that confirms the warhead covalent-binding principle (by CDK-specific kinase assays), (2) the highly pronounced antiviral efficacies of the hit compounds (in cultured cell-based infection models) with half-maximal effective concentrations that reach down to picomolar levels, (3) a particularly strong potency of compounds against strains and reporter-expressing recombinants of HCMV (using infection assays in primary human fibroblasts), (4) additional activity against further herpesviruses such as animal CMVs and VZV, (5) unique mechanistic properties that include an immediate block of HCMV replication directed early (determined by Western blot detection of viral marker proteins), (6) a substantial drug synergism in combination with MBV (measured by a Loewe additivity fixed-dose assay), and (7) a strong sensitivity of clinically relevant HCMV mutants carrying MBV or ganciclovir resistance markers. Combined, the data highlight the huge developmental potential of this host-directed antiviral targeting concept utilizing covalently binding CDK7 inhibitors.

2.
Pharmaceutics ; 15(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38140021

RESUMO

Despite the availability of currently approved antiviral drugs, infections with human cytomegalovirus (HCMV) still cause clinically challenging, sometimes life-threatening situations. There is an urgent need for enhanced anti-HCMV drugs that offer improved efficacy, reduced dosages and options for long-term treatment without risk of the development of viral drug resistance. Recently, we reported the pronounced anti-HCMV efficacy of pharmacological inhibitors of cyclin-dependent kinases (CDKs), in particular, the potential of utilizing drug synergies upon combination treatment with inhibitors of host CDKs and the viral CDK-like kinase pUL97 (vCDK/pUL97). Here, we expand this finding by further assessing the in vitro synergistic antiviral interaction between vCDK and CDK inhibitors towards HCMV as well as non-human cytomegaloviruses. An extension of this synergy approach was achieved in vivo by using the recombinant MCMV-UL97/mouse model, confirming the high potential of combination treatment with the clinically approved vCDK inhibitor maribavir (MBV) and the developmental CDK7 inhibitor LDC4297. Moreover, mechanistic aspects of this synergistic drug combination were illustrated on the levels of intracellular viral protein transport and viral genome replication. The analysis of viral drug resistance did not reveal resistance formation in the case of MBV + LDC4297 combination treatment. Spanning various investigational levels, these new results strongly support our concept, employing the great potential of anti-HCMV synergistic drug treatment.

3.
Cells ; 12(8)2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37190072

RESUMO

Herpesviral nuclear egress is a regulated process of viral capsid nucleocytoplasmic release. Due to the large capsid size, a regular transport via the nuclear pores is unfeasible, so that a multistage-regulated export pathway through the nuclear lamina and both leaflets of the nuclear membrane has evolved. This process involves regulatory proteins, which support the local distortion of the nuclear envelope. For human cytomegalovirus (HCMV), the nuclear egress complex (NEC) is determined by the pUL50-pUL53 core that initiates multicomponent assembly with NEC-associated proteins and capsids. The transmembrane NEC protein pUL50 serves as a multi-interacting determinant that recruits regulatory proteins by direct and indirect contacts. The nucleoplasmic core NEC component pUL53 is strictly associated with pUL50 in a structurally defined hook-into-groove complex and is considered as the potential capsid-binding factor. Recently, we validated the concept of blocking the pUL50-pUL53 interaction by small molecules as well as cell-penetrating peptides or an overexpression of hook-like constructs, which can lead to a pronounced degree of antiviral activity. In this study, we extended this strategy by utilizing covalently binding warhead compounds, originally designed as binders of distinct cysteine residues in target proteins, such as regulatory kinases. Here, we addressed the possibility that warheads may likewise target viral NEC proteins, building on our previous crystallization-based structural analyses that revealed distinct cysteine residues in positions exposed from the hook-into-groove binding surface. To this end, the antiviral and NEC-binding properties of a selection of 21 warhead compounds were investigated. The combined findings are as follows: (i) warhead compounds exhibited a pronounced anti-HCMV potential in cell-culture-based infection models; (ii) computational analysis of NEC primary sequences and 3D structures revealed cysteine residues exposed to the hook-into-groove interaction surface; (iii) several of the active hit compounds exhibited NEC-blocking activity, as shown at the single-cell level by confocal imaging; (iv) the clinically approved warhead drug ibrutinib exerted a strong inhibitory impact on the pUL50-pUL53 core NEC interaction, as demonstrated by the NanoBiT assay system; and (v) the generation of recombinant HCMV ∆UL50-ΣUL53, allowing the assessment of viral replication under conditional expression of the viral core NEC proteins, was used for characterizing viral replication and a mechanistic evaluation of ibrutinib antiviral efficacy. Combined, the results point to a rate-limiting importance of the HCMV core NEC for viral replication and to the option of exploiting this determinant by the targeting of covalently NEC-binding warhead compounds.


Assuntos
Antivirais , Citomegalovirus , Humanos , Antivirais/farmacologia , Antivirais/metabolismo , Cisteína/metabolismo , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo , Proteínas Virais/metabolismo
4.
Front Vet Sci ; 10: 1305873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38234983

RESUMO

As a remedy against stress and anxiety, cannabidiol (CBD) products are of increasing interest in veterinary medicine. Limited data is available describing the actual effectiveness of CBD in horses. The aim of this study (part 2 of 2) was to analyze stress parameters via behavioral observation, heart rate monitoring and assessment of blood and saliva cortisol levels in healthy horses treated repeatedly with a CBD containing paste. Twelve horses were randomly assigned to a treatment or a control group. Two pastes were orally administered in a double-blinded study design, one paste containing CBD and one paste without active ingredient. Both pastes were administered twice daily over 15 days (dose: 3 mg CBD/kg). Behavioral observations were conducted daily using a sedation score and a rating of facial expressions, based on the previously described facial sedation scale for horses (FaceSed) and the Horse Grimace Scale. Blood and saliva samples were obtained regularly to determine cortisol levels throughout the study. Cortisol levels were analyzed by means of liquid chromatography/tandem mass spectrometry (LC/MS/MS). Behavioral observations and cortisol levels were compared between groups. Prior to paste administration, a novel object test was performed and the horses' reaction to loading on a trailer was recorded. Both tests were repeated after 13 days of paste application. Movement patterns such as different gaits during the novel object test were evaluated and an ethogram was designed to assess exhibited behavioral traits. Cardiac beat-to-beat (R-R) intervals were recorded throughout and evaluated using heart rate (HR) and heart rate variability (HRV) parameters. Blood and saliva samples for cortisol analysis were taken before and after the tests. Daily behavioral observations and cortisol levels did not differ between the treatment and the control group. Similarly, analysis of movement patterns, HR, HRV and cortisol levels during the novel object test and trailer test did not identify significant differences between the groups. Regularly administered oral CBD (3 mg/kg BID over 15 days) had no statistically significant effect on behavioral observations, cortisol levels, HR and HRV in horses. Further research is required to establish adequate doses and indications for the use of CBD in horses.

5.
Cells ; 11(24)2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36552794

RESUMO

Herpesviruses replicate their genomes and assemble their capsids in the host cell nucleus. To progress towards morphogenesis in the cytoplasm, herpesviruses evolved the strategy of nuclear egress as a highly regulated process of nucleo-cytoplasmic capsid transition. The process is conserved among α-, ß- and γ-herpesviruses and involves the formation of a core and multicomponent nuclear egress complex (NEC). Core NEC is assembled by the interaction between the nucleoplasmic hook protein, i.e., pUL53 (human cytomegalovirus, HCMV), and the integral membrane-associated groove protein, i.e., pUL50. Our study aimed at the question of whether a panherpesviral NEC scaffold may enable hook-into-groove interaction across herpesviral subfamilies. For this purpose, NEC constructs were generated for members of all three subfamilies and analyzed for multi-ligand interaction using a yeast two-hybrid (Y2H) approach with randomized pUL53 mutagenesis libraries. The screening identified ten library clones displaying cross-viral shared hook-into-groove interaction. Interestingly, a slightly modified Y2H screening strategy provided thirteen further changed-hook pUL53 clones having lost parental pUL50 interaction but gained homolog interaction. In addition, we designed a sequence-predicted hybrid construct based on HCMV and Epstein-Barr virus (EBV) core NEC proteins and identified a cross-viral interaction phenotype. Confirmation was provided by applying protein-protein interaction analyses in human cells, such as coimmunoprecipitation settings, confocal nuclear rim colocalization assays, and HCMV ΔUL53 infection experiments with pUL53-complementing cells. Combined, the study provided the first examples of cross-viral NEC interaction patterns and revealed a higher yield of human cell-confirmed binding clones using a library exchange rate of 3.4 than 2.7. Thus, the study provides improved insights into herpesviral NEC protein binding specificities of core NEC formation. This novel information might be exploited to gain a potential target scaffold for the development of broadly acting NEC-directed inhibitory small molecules.


Assuntos
Infecções por Vírus Epstein-Barr , Humanos , Herpesvirus Humano 4 , Citomegalovirus , Núcleo Celular/metabolismo , Simplexvirus , Mutagênese
6.
STAR Protoc ; 3(2): 101374, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35586313

RESUMO

In this protocol, we describe the use of ChipCytometry to combine RNA in situ hybridization and antibody staining for multiplexed tissue imaging of human formalin-fixed and paraffin-embedded tissue samples. The advantages of ChipCytometry are long-term storage for re-interrogation and advanced image quality by high dynamic range imaging of staining and background. A titrated pretreatment of tissue samples bypasses challenges because of the retrieval of antigens on coverslips and achieves an optimal staining quality at the minimal expense of tissue integrity. For complete details on the use and execution of this protocol, please refer to Jarosch et al. (2021).


Assuntos
Formaldeído , RNA , Humanos , Hibridização In Situ , RNA/genética , RNA Mensageiro/genética
7.
Mol Cell Biochem ; 477(6): 1829-1848, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35334034

RESUMO

The nicotinamide adenine dinucleotide (NAD+) is an essential redox cofactor, involved in various physiological and molecular processes, including energy metabolism, epigenetics, aging, and metabolic diseases. NAD+ repletion ameliorates muscular dystrophy and improves the mitochondrial and muscle stem cell function and thereby increase lifespan in mice. Accordingly, NAD+ is considered as an anti-oxidant and anti-aging molecule. NAD+ plays a central role in energy metabolism and the energy produced is used for movements, thermoregulation, and defense against foreign bodies. The dietary precursors of NAD+ synthesis is targeted to improve NAD+ biosynthesis; however, studies have revealed conflicting results regarding skeletal muscle-specific effects. Recent advances in the activation of nicotinamide phosphoribosyltransferase in the NAD+ salvage pathway and supplementation of NAD+ precursors have led to beneficial effects in skeletal muscle pathophysiology and function during aging and associated metabolic diseases. NAD+ is also involved in the epigenetic regulation and post-translational modifications of proteins that are involved in various cellular processes to maintain tissue homeostasis. This review provides detailed insights into the roles of NAD+ along with molecular mechanisms during aging and disease conditions, such as the impacts of age-related NAD+ deficiencies on NAD+-dependent enzymes, including poly (ADP-ribose) polymerase (PARPs), CD38, and sirtuins within skeletal muscle, and the most recent studies on the potential of nutritional supplementation and distinct modes of exercise to replenish the NAD+ pool.


Assuntos
Doenças Musculares , NAD , Envelhecimento/metabolismo , Animais , Epigênese Genética , Camundongos , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , NAD/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo
8.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269635

RESUMO

Human cytomegalovirus (HCMV) is a pathogenic human herpesvirus associated with serious, potentially life-threatening symptoms in the immunocompromised or immunonaïve host. The limitations encountered by antiviral therapy options currently available include a narrow panel of accessible targets, the induction of viral drug resistance as well as severe drug dosage-mediated side-effects. Improved drug-targeting strategies to resolve these issues are the focus of our investigations. In particular, pharmaceutical kinase inhibitors (PKIs), either directed to host kinases or directed to the viral protein kinase pUL97, have been considered to overcome these restrictions. Recently, we reported the identification of a synergistic combination of two PKIs directed to host cyclin-dependent kinase 7 (CDK7) and viral CDK ortholog pUL97. Here, we substantiate these findings with the following results: (i) true drug synergy was exhibited by various chemical classes of PKI pairs directed to pUL97 and CDK7; (ii) no putative amplification of cytotoxicity by these drug combinations was observed; (iii) a reduction in drug dosage levels for synergistic combinations was defined on a quantitative basis and compared to monotreatments; (iv) the quantities of target proteins CDK7 and pUL97 expressed in HCMV-infected cells were assessed by confocal imaging, indicating a strong down-modulation of CDK7 levels as a result of synergistic drug treatment; (v) the functional importance of these target kinases, both binding to cyclin H, was illustrated by assessing HCMV replication under the viral genomic deletion of ORF-UL97 or cellular cyclin knock-out; (vi) new combinations of HCMV-specific drug synergy were demonstrated for solely host-directed treatments using PKIs against CDK2, CDK7, CDK8 and/or CDK9 and (vii) a triple PKI combination provided further support for the synergy approach. With these combined findings, this study highlights the potential of therapeutic drug combinations of approved, developmental and preclinical PKIs for expanding future options for anti-HCMV therapy.


Assuntos
Quinases Ciclina-Dependentes , Citomegalovirus , Quinases Ciclina-Dependentes/metabolismo , Citomegalovirus/genética , Combinação de Medicamentos , Farmacorresistência Viral , Humanos , Proteínas Virais/metabolismo , Replicação Viral
9.
Viruses ; 13(7)2021 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-34198986

RESUMO

The replication of human cytomegalovirus (HCMV) is characterized by a complex network of virus-host interaction. This involves the regulatory viral protein kinase pUL97, which represents a viral cyclin-dependent kinase ortholog (vCDK) combining typical structural and functional features of host CDKs. Notably, pUL97 interacts with the three human cyclin types T1, H and B1, whereby the binding region of cyclin T1 and the region conferring oligomerization of pUL97 were both assigned to amino acids 231-280. Here, we addressed the question of whether recombinant HCMVs harboring deletions in this region were impaired in cyclin interaction, kinase functionality or viral replication. To this end, recombinant HCMVs were generated by traceless BACmid mutagenesis and were phenotypically characterized using a methodological platform based on qPCR, coimmunoprecipitation, in vitro kinase assay (IVKA), Phos-tag Western blot and confocal imaging analysis. Combined data illustrate the following: (i) infection kinetics of all three recombinant HCMVs, i.e., ORF-UL97 ∆231-255, ∆256-280 and ∆231-280, showed impaired replication efficiency compared to the wild type, amongst which the largest deletion exhibited the most pronounced defect; (ii) specifically, this mutant ∆231-280 showed a loss of interaction with cyclin T1, as demonstrated by CoIP and confocal imaging; (iii) IVKA and Phos-tag analyses revealed strongly affected kinase activity for ∆231-280, with strong impairment of both autophosphorylation and substrate phosphorylation, but less pronounced impairments for ∆231-255 and ∆256-280; and (iv) a bioinformatic assessment of the pUL97-cyclin T1 complex led to the refinement of our current binding model. Thus, the results provide initial evidence for the functional importance of the pUL97-cyclin interaction concerning kinase activity and viral replication fitness.


Assuntos
Ciclinas/metabolismo , Citomegalovirus/enzimologia , Citomegalovirus/genética , Interações Hospedeiro-Patógeno , Proteínas Virais/metabolismo , Ciclinas/classificação , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidade , Fibroblastos/virologia , Prepúcio do Pênis/citologia , Humanos , Imunoprecipitação , Masculino , Fosforilação , Ligação Proteica , Proteínas Virais/genética , Replicação Viral
10.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430060

RESUMO

Human cytomegalovirus (HCMV) is a human pathogenic herpesvirus associated with a variety of clinical symptoms. Current antiviral therapy is not always effective, so that improved drug classes and drug-targeting strategies are needed. Particularly host-directed antivirals, including pharmaceutical kinase inhibitors (PKIs), may help to overcome problems of drug resistance. Here, we focused on utilizing a selection of clinically relevant PKIs and determined their anticytomegaloviral efficacies. Particularly, PKIs directed to host or viral cyclin-dependent kinases, i.e., abemaciclib, LDC4297 and maribavir, exerted promising profiles against human and murine cytomegaloviruses. The anti-HCMV in vitro activity of the approved anti-cancer drug abemaciclib was confirmed in vivo using our luciferase-based murine cytomegalovirus (MCMV) animal model in immunocompetent mice. To assess drug combinations, we applied the Bliss independence checkerboard and Loewe additivity fixed-dose assays in parallel. Results revealed that (i) both affirmative approaches provided valuable information on anti-CMV drug efficacies and interactions, (ii) the analyzed combinations comprised additive, synergistic or antagonistic drug interactions consistent with the drugs' antiviral mode-of-action, (iii) the selected PKIs, especially LDC4297, showed promising inhibitory profiles, not only against HCMV but also other α-, ß- and γ-herpesviruses, and specifically, (iv) the combination treatment with LDC4297 and maribavir revealed a strong synergism against HCMV, which might open doors towards novel clinical options in the near future. Taken together, this study highlights the potential of therapeutic drug combinations of current developmental/preclinical PKIs.


Assuntos
Infecções por Citomegalovirus/tratamento farmacológico , Farmacorresistência Viral/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Replicação Viral/genética , Aminopiridinas/farmacologia , Animais , Antivirais/farmacologia , Benzimidazóis/farmacologia , Linhagem Celular , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Combinação de Medicamentos , Ganciclovir/farmacologia , Humanos , Camundongos , Pirazóis/farmacologia , Ribonucleosídeos/farmacologia , Triazinas/farmacologia , Replicação Viral/efeitos dos fármacos
11.
Virus Res ; 285: 198023, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32428517

RESUMO

Human cytomegalovirus (HCMV) is a ubiquitous human pathogen of high clinical relevance. Despite intensive research of virus-host interaction, crucial details still remain unknown. In this study, the role of the cellular peptidyl-prolyl cis/trans isomerase Pin1 during HCMV infection was investigated. Pin1 is able to recognize phosphorylated serine/threonine-proline motifs and regulates the structural conformation, stability and function of its substrates. Concerning HCMV replication, our recent studies revealed that Pin1 plays an important role in viral nuclear egress by contributing to the depletion of the nuclear lamina at distinct sites through the cis/trans conversion of lamin proteins. Here, novel data illustrate the HCMV-induced upregulation of Pin1 including various cell types being permissive, semi-permissive or non-permissive for productive HCMV replication. Addressing the question of functional impact, Pin1 knock-out (KO) did not show a measurable effect on viral protein expression, at least when assessed by Western blot analysis. Applying highly sensitive methods of qPCR and plaque titration, a pharmacological inhibition of Pin1 activity, however, led to a significant decrease of viral genome equivalents and production of infectious virus, respectively. When focusing on the identification of viral proteins interacting with Pin1 by various coimmunoprecipitation (CoIP) settings, we obtained positive signals for (i) the core nuclear egress complex protein pUL50, (ii) the viral mRNA export factor pUL69 and (iii) the viral DNA polymerase processivity factor pUL44. Confocal immunofluorescence analysis focusing on partial colocalization between Pin1 and the coexpressed viral proteins pUL50, pUL69 or pUL44, respectively, was consistent with the CoIP experiments. Mapping experiments, using transient expression constructs for a series of truncated protein versions and specific replacement mutants, revealed a complex pattern of Pin1 interaction with these three early regulatory HCMV proteins. Data suggest a combination of different modes of Pin1 interactions, involving both classical phosphorylation-dependent Pin1 binding motifs and additional phosphorylation-independent binding sites. Combined, these results support the concept that Pin1 may play an important role in several stages of HCMV infection, thus determining viral replicative efficiency.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Células HEK293 , Humanos , Proteínas Virais/metabolismo , Replicação Viral
12.
J Gen Virol ; 101(3): 284-289, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31958050

RESUMO

Infections with human herpesviruses share several molecular characteristics, but the diversified medical outcomes are distinct to viral subfamilies and species. Notably, both clinical and molecular correlates of infection are a challenging field and distinct patterns of virus-host interaction have rarely been defined; this study therefore focuses on the search for virus-specific molecular indicators. As previous studies have demonstrated the impact of herpesvirus infections on changes in host signalling pathways, we illustrate virus-modulated expression levels of individual cellular protein kinases. Current data reveal (i) α-, ß- and γ-herpesvirus-specific patterns of kinase modulation as well as (ii) differential levels of up-/downregulated kinase expression and phosphorylation, which collectively suggest (iii) defined signalling patterns specific for the various viruses (VSS) that may prove useful for defining molecular indicators. Combined, the study confirms the correlation between herpesviral replication and modulation of signalling kinases, possibly exploitable for the in vitro characterization of viral infections.


Assuntos
Alphaherpesvirinae/metabolismo , Betaherpesvirinae/metabolismo , Fibroblastos/metabolismo , Gammaherpesvirinae/metabolismo , Infecções por Herpesviridae/metabolismo , Linfócitos/metabolismo , Proteínas Quinases/metabolismo , Replicação Viral/fisiologia , Células Cultivadas , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno , Humanos , Fosforilação , Transdução de Sinais/fisiologia , Regulação para Cima
13.
Allergy ; 75(3): 576-587, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31512243

RESUMO

BACKGROUND: Hundreds of plant species release their pollen into the air every year during early spring. During that period, pollen allergic as well as non-allergic patients frequently present to doctors with severe respiratory tract infections. Our objective was therefore to assess whether pollen may interfere with antiviral immunity. METHODS: We combined data from real-life human exposure cohorts, a mouse model and human cell culture to test our hypothesis. RESULTS: Pollen significantly diminished interferon-λ and pro-inflammatory chemokine responses of airway epithelia to rhinovirus and viral mimics and decreased nuclear translocation of interferon regulatory factors. In mice infected with respiratory syncytial virus, co-exposure to pollen caused attenuated antiviral gene expression and increased pulmonary viral titers. In non-allergic human volunteers, nasal symptoms were positively correlated with airborne birch pollen abundance, and nasal birch pollen challenge led to downregulation of type I and -III interferons in nasal mucosa. In a large patient cohort, numbers of rhinoviruspositive cases were correlated with airborne birch pollen concentrations. CONCLUSION: The ability of pollen to suppress innate antiviral immunity, independent of allergy, suggests that high-risk population groups should avoid extensive outdoor activities when pollen and respiratory virus seasons coincide.


Assuntos
Imunidade Inata , Pólen/efeitos adversos , Vírus Sinciciais Respiratórios , Rhinovirus , Animais , Humanos , Interferons , Camundongos , Mucosa Nasal
14.
Neurol Genet ; 4(6): e281, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30533527

RESUMO

OBJECTIVE: To provide new insights into the FOXG1-related clinical and imaging phenotypes and refine the phenotype-genotype correlation in FOXG1 syndrome. METHODS: We analyzed the clinical and imaging phenotypes of a cohort of 45 patients with a pathogenic or likely pathogenic FOXG1 variant and performed phenotype-genotype correlations. RESULTS: A total of 37 FOXG1 different heterozygous mutations were identified, of which 18 are novel. We described a broad spectrum of neurodevelopmental phenotypes, characterized by severe postnatal microcephaly and developmental delay accompanied by a hyperkinetic movement disorder, stereotypes and sleep disorders, and epileptic seizures. Our data highlighted 3 patterns of gyration, including frontal pachygyria in younger patients (26.7%), moderate simplified gyration (24.4%) and mildly simplified or normal gyration (48.9%), corpus callosum hypogenesis mostly in its frontal part, combined with moderate-to-severe myelination delay that improved and normalized with age. Frameshift and nonsense mutations in the N-terminus of FOXG1, which are the most common mutation types, show the most severe clinical features and MRI anomalies. However, patients with recurrent frameshift mutations c.460dupG and c.256dupC had variable clinical and imaging presentations. CONCLUSIONS: These findings have implications for genetic counseling, providing evidence that N-terminal mutations and large deletions lead to more severe FOXG1 syndrome, although genotype-phenotype correlations are not necessarily straightforward in recurrent mutations. Together, these analyses support the view that FOXG1 syndrome is a specific disorder characterized by frontal pachygyria and delayed myelination in its most severe form and hypogenetic corpus callosum in its milder form.

15.
Viruses ; 10(1)2018 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-29342872

RESUMO

The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.


Assuntos
Capsídeo/fisiologia , Citomegalovirus/enzimologia , Citomegalovirus/fisiologia , Membrana Nuclear/virologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Quinases/metabolismo , Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , Citomegalovirus/ultraestrutura , Interações Hospedeiro-Patógeno , Humanos , Imuno-Histoquímica , Microscopia Eletrônica , Membrana Nuclear/ultraestrutura , Lâmina Nuclear/ultraestrutura , Lâmina Nuclear/virologia , Fosforilação , Proteínas Virais/metabolismo , Montagem de Vírus , Liberação de Vírus , Replicação Viral
17.
PLoS Pathog ; 12(8): e1005825, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27556400

RESUMO

The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear lamina in response to herpesviral or inherent cellular stimuli. In essence, Pin1 represents a regulatory effector of lamina disassembly that promotes the nuclear pore-independent egress of herpesviral capsids.


Assuntos
Infecções por Herpesviridae/virologia , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Lâmina Nuclear/virologia , Replicação Viral/fisiologia , Western Blotting , Capsídeo/metabolismo , Capsídeo/virologia , Células Cultivadas , Imunofluorescência , Herpesviridae , Infecções por Herpesviridae/metabolismo , Humanos , Laminas , Espectroscopia de Ressonância Magnética , Lâmina Nuclear/metabolismo , Fosforilação
18.
J Gen Virol ; 97(7): 1676-1685, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27145986

RESUMO

Nuclear egress of herpesvirus capsids through the nuclear envelope is mediated by the multimeric nuclear egress complex (NEC). The human cytomegalovirus (HCMV) core NEC is defined by an interaction between the membrane-anchored pUL50 and its nuclear co-factor pUL53, tightly associated through heterodimeric corecruitment to the nuclear envelope. Cellular proteins, such as p32/gC1qR, emerin and protein kinase C (PKC), are recruited by direct interaction with pUL50 for the multimeric extension of the NEC. As a functionally important event, the recruitment of both viral and cellular protein kinases leads to site-specific lamin phosphorylation and nuclear lamina disassembly. In this study, interaction domains within pUL50 for its binding partners were defined by co-immunoprecipitation. The interaction domain for pUL53 is located within the pUL50 N-terminus (residues 10-169), interaction domains for p32/gC1qR (100-358) and PKC (100-280) overlap in the central part of pUL50, and the interaction domain for emerin is located in the C-terminus (265-397). Moreover, expression and formation of core NEC proteins at the nuclear rim were consistently detected in cells permissive for productive HCMV replication, including two trophoblast-cell lines. Importantly, regular nuclear-rim formation of the core NEC was blocked by inhibition of cyclin-dependent kinase (CDK) activity. In relation to the recently published crystal structure of the HCMV core NEC, our findings result in a refined view of NEC assembly. In particular, we suggest that CDKs may play an important regulatory role in NEC formation during HCMV replication.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Citomegalovirus/metabolismo , Membrana Nuclear/virologia , Proteínas Virais/metabolismo , Liberação de Vírus/fisiologia , Replicação Viral/fisiologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Lâmina Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Mapas de Interação de Proteínas , Proteína Quinase C-alfa/metabolismo , Estrutura Terciária de Proteína
19.
Viruses ; 8(3): 73, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26978388

RESUMO

In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell's nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein.


Assuntos
Citomegalovirus/genética , Membrana Nuclear/química , Células Vegetais , Proteínas Recombinantes/análise , Proteínas Virais/análise , Expressão Gênica , Células HeLa , Humanos , Imunoprecipitação , Microscopia Confocal , Proteínas Recombinantes/genética , Nicotiana , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética
20.
J Gen Virol ; 97(1): 144-151, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26555090

RESUMO

Cyclin-dependent kinases (CDKs) are multifaceted regulators involved in the replication of human cytomegalovirus. Recently, we demonstrated an interaction of CDK9-cyclin T1 as well as viral CDK orthologue pUL97 with the viral regulator pUL69, thereby leading to pUL69-activating phosphorylation. Here, we demonstrate that colocalization and direct pUL69-cyclin T1 interaction is independent of viral strains and host cell types. In vitro phosphorylation of pUL69 by CDK9 or pUL97 did not occur in a single site-specific manner, but at multiple sites. The previously described fine-speckled nuclear aggregation of pUL69 was assigned to the late phase of viral replication. CDK inhibitors, including a novel inhibitor of the CDK-activating kinase CDK7, massively intensified this fine-speckled accumulation. Interestingly, we also observed spontaneous pUL69 accumulation in the absence of inhibitors at a lower frequency. These findings provide new insight into pUL69 kinase interregulation and emphasize the importance of pUL69 phosphorylation for correct intranuclear localization.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Citomegalovirus/fisiologia , Interações Hospedeiro-Patógeno , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Processamento de Proteína Pós-Traducional , Transativadores/metabolismo , Humanos , Fosforilação , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...