Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Food Sci Technol ; 61(8): 1470-1480, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966787

RESUMO

Vacuum impregnation is a novel methodology for adding various substances to porous foods. This study aimed to develop a cost effective automate system for vacuum impregnation of food materials to enhance their nutritional, functional and sensory properties depending on the functionality of the impregnation solution. The developed vacuum impregnation system includes a vacuum chamber, vacuum pump and an automation setup for creating and maintaining vacuum conditions, feeding impregnated solutions to the samples and releasing vacuum. Fresh-cut spinach leaves were impregnated with ascorbic acid (AsA) and calcium chloride (Cacl2) (10% concentration) in the setup in order to test the effect of the process on some biochemical properties. Statistical analysis revealed significant effect of vacuum impregnation on the biochemical properties (total soluble solids, total phenolic content, flavonoid content and free radical scavenging activity) and color of spinach leaves during storage up to 4 days. Impregnation process showed significant increase in the total phenolic and flavonoid content of the spinach leaves. Increment up to 78% in antioxidant activity was seen for the uncoated impregnated leaves as compared to 59% activity in untreated samples. Thus, products with desired parameters can be produced with this process with minimal impact on their properties at a lower cost and in a shorter time period.

2.
J Sci Food Agric ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837361

RESUMO

BACKROUND: Aonla is as a good source of antioxidants due to its high ascorbic acid and polyphenol contents. However, because of its high acidity and astringent taste, aonla is rarely consumed in its fresh form. As the constituents in aonla are heat sensitive, it is essential to find a suitable drying method for preservation. Therefore, refractance window drying (RWD) of aonla slices was studied as it has the potential of retaining heat-sensitive compounds. RESULTS: The effect of RWD process variables, namely water temperature (75, 82.5, 90 °C) and slice thickness (2, 4, 6 mm), on different quality parameters of dehydrated aonla was studied. Increasing water temperature resulted in significantly higher ascorbic acid content, titratable acidity and product temperature, while total phenolic content, free radical scavenging activity and moisture content decreased. With the exception of product temperature, higher slice thickness led to an increase in the values of all the parameters. At the optimized processing conditions of 83 °C water temperature and 4 mm slice thickness, the ascorbic acid content, total phenolic content, free radical scavenging activity, titratable acidity and moisture content values were found to be 269.03 mg (100 g)-1, 242.33 mg (100 g)-1, 87.11%, 3.62% and 4% respectively. The aonla slices subjected to RWD also possessed 4-6% higher phytochemical content than osmotically dried and hot-air-dried samples. CONCLUSION: This research highlights the effectiveness of RWD in preserving heat-sensitive compounds in food like aonla. The RW-dried slices had a smoother and more uniform microstructure compared to osmotically dried and hot-air-dried samples. © 2024 Society of Chemical Industry.

3.
Sci Rep ; 13(1): 15579, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730709

RESUMO

Amidst increasing demand for nutritious foods, the quest for effective methods to enhance health-promoting attributes has intensified. Vacuum impregnation (VI) is a promising technique to augment produce properties while minimizing impacts on biochemical attributes. In light of broccoli's growing popularity driven by its nutritional benefits, this study explores the impact of VI using ascorbic acid and calcium chloride as impregnation agents on enhancing its phytochemical properties. Response surface methodology (RSM) was used for optimization of the vacuum impregnation process with Vacuum pressure (0.6, 0.4, 0.2 bar), vacuum time (3, 7, 11 min), restoration time (5, 10, 15 min), and concentrations (0.5, 1.0, 1.5%) as independent parameters. The influence of these process parameters on six targeted responses viz. total phenolic content (TPC), total flavonoid content (TFC), ascorbic acid content (AAC), total chlorophyll content (TCC), free radical scavenging activity (FRSA), and carotenoid content (CC) were analysed. Levenberg-Marquardt back propagated neural network (LMB-ANN) was used to model the impregnation process. Multiple response optimization of the vacuum impregnation process indicated an optimum condition of 0.2 bar vacuum pressure, 11 min of vacuum time, 12 min of restoration time, and 1.5% concentration of solution for vacuum impregnation of broccoli. The values of TPC, TFC, AAC, TCC, FRSA, and CC obtained at optimized conditions were 291.20 mg GAE/100 g, 11.29 mg QE/100 g, 350.81 mg/100 g, 1.21 mg/100 g, 79.77 mg, and 8.51 mg, respectively. The prediction models obtained through ANN was found suitable for predicting the responses with less standard errors and higher R2 value as compared to RSM models. Instrumental characterization (FTIR, XRD and SEM analysis) of untreated and treated samples were done to see the effect of impregnation on microstructural and morphological changes in broccoli. The results showed enhancement in the TPC, TFC, AAC, TCC, FRSA, and CC values of broccoli florets with impregnation. The FTIR and XRD analysis also supported the results.


Assuntos
Brassica , Vácuo , Ácido Ascórbico , Cloreto de Cálcio , Carotenoides , Clorofila , Flavonoides , Fenóis , Compostos Fitoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA