Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 11(10): e1004516, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26505203

RESUMO

The modeling of large biomolecular assemblies relies on an efficient rendering of their hierarchical architecture across a wide range of spatial level of detail. We describe a paradigm shift currently under way in computer graphics towards the use of more realistic global illumination models, and we apply the so-called ambient occlusion approach to our open-source multi-scale modeling program, Sculptor. While there are many other higher quality global illumination approaches going all the way up to full GPU-accelerated ray tracing, they do not provide size-specificity of the features they shade. Ambient occlusion is an aspect of global lighting that offers great visual benefits and powerful user customization. By estimating how other molecular shape features affect the reception of light at some surface point, it effectively simulates indirect shadowing. This effect occurs between molecular surfaces that are close to each other, or in pockets such as protein or ligand binding sites. By adding ambient occlusion, large macromolecular systems look much more natural, and the perception of characteristic surface features is strongly enhanced. In this work, we present a real-time implementation of screen space ambient occlusion that delivers realistic cues about tunable spatial scale characteristics of macromolecular architecture. Heretofore, the visualization of large biomolecular systems, comprising e.g. hundreds of thousands of atoms or Mega-Dalton size electron microscopy maps, did not take into account the length scales of interest or the spatial resolution of the data. Our approach has been uniquely customized with shading that is tuned for pockets and cavities of a user-defined size, making it useful for visualizing molecular features at multiple scales of interest. This is a feature that none of the conventional ambient occlusion approaches provide. Actual Sculptor screen shots illustrate how our implementation supports the size-dependent rendering of molecular surface features.


Assuntos
Imageamento Tridimensional/métodos , Simulação de Dinâmica Molecular , Proteínas/química , Proteínas/ultraestrutura , Software , Interface Usuário-Computador , Algoritmos , Gráficos por Computador , Sistemas Computacionais , Modelos Químicos , Conformação Proteica
2.
Biophys Rev ; 4(3): 223-229, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23066432

RESUMO

The low radiation conditions and the predominantly phase-object image formation of cryo-electron microscopy (cryo-EM) result in extremely high noise levels and low contrast in the recorded micrographs. The process of single particle or tomographic 3D reconstruction does not completely eliminate this noise and is even capable of introducing new sources of noise during alignment or when correcting for instrument parameters. The recently developed Digital Paths Supervised Variance (DPSV) denoising filter uses local variance information to control regional noise in a robust and adaptive manner. The performance of the DPSV filter was evaluated in this review qualitatively and quantitatively using simulated and experimental data from cryo-EM and tomography in two and three dimensions. We also assessed the benefit of filtering experimental reconstructions for visualization purposes and for enhancing the accuracy of feature detection. The DPSV filter eliminates high-frequency noise artifacts (density gaps), which would normally preclude the accurate segmentation of tomography reconstructions or the detection of alpha-helices in single-particle reconstructions. This collaborative software development project was carried out entirely by virtual interactions among the authors using publicly available development and file sharing tools.

3.
J Struct Biol ; 178(2): 121-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22433493

RESUMO

The molecular graphics program Sculptor and the command-line suite Situs are software packages for the integration of biophysical data across spatial resolution scales. Herein, we provide an overview of recently developed tools relevant to cryo-electron tomography (cryo-ET), with an emphasis on functionality supported by Situs 2.7.1 and Sculptor 2.1.1. We describe a work flow for automatically segmenting filaments in cryo-ET maps including denoising, local normalization, feature detection, and tracing. Tomograms of cellular actin networks exhibit both cross-linked and bundled filament densities. Such filamentous regions in cryo-ET data sets can then be segmented using a stochastic template-based search, VolTrac. The approach combines a genetic algorithm and a bidirectional expansion with a tabu search strategy to localize and characterize filamentous regions. The automated filament segmentation by VolTrac compares well to a manual one performed by expert users, and it allows an efficient and reproducible analysis of large data sets. The software is free, open source, and can be used on Linux, Macintosh or Windows computers.


Assuntos
Microscopia Crioeletrônica/métodos , Citoesqueleto/fisiologia , Tomografia com Microscopia Eletrônica/métodos , Algoritmos , Modelos Moleculares , Software
4.
AMIA Annu Symp Proc ; 2012: 940-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23304369

RESUMO

The need to maintain accessibility of the biomedical literature has led to development of methods to assist human indexers by recommending index terms for newly encountered articles. Given the rapid expansion of this literature, it is essential that these methods be scalable. Document vector representations are commonly used for automated indexing, and Random Indexing (RI) provides the means to generate them efficiently. However, RI is difficult to implement in real-world indexing systems, as (1) efficient nearest-neighbor search requires retaining all document vectors in RAM, and (2) it is necessary to maintain a store of randomly generated term vectors to index future documents. Motivated by these concerns, this paper documents the development and evaluation of a deterministic binary variant of RI. The increased capacity demonstrated by binary vectors has implications for information retrieval, and the elimination of the need to retain term vectors facilitates distributed implementations, enhancing the scalability of RI.


Assuntos
Indexação e Redação de Resumos/métodos , Medical Subject Headings , Modelos Teóricos , Processamento de Linguagem Natural , PubMed , MEDLINE
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...