Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Klin Monbl Augenheilkd ; 239(12): 1473-1477, 2022 Dec.
Artigo em Inglês, Alemão | MEDLINE | ID: mdl-36493766

RESUMO

X-linked retinoschisis (XLRS) is a rare vitreoretinal dystrophy caused by molecular genetic changes in the RS1 gene. It usually manifests itself at a young age with symmetrical splitting within different layers of the retina and leads to a significant reduction in visual acuity. Correct diagnosis at older ages is difficult due to nonspecific changes in OCT scans. We report the morphological changes in OCT scans at different stages of life in a family with XLRS and a novel mutation in the RS1 gene. Our 78-year-old index patient presented with visual disturbances that he had experienced since his childhood. After a detailed anamnesis, complete clinical examination and measurement with SD-OCT, we performed germline genetic testing using whole blood DNA on the index patient, his clinically unaffected daughter and her clinically affected son. The OCT examination of the index patient showed nonspecific atrophic macular changes on both sides. A fundoscopy of the 8-year-old grandson showed the typical macular star pattern. The OCT scan showed the typical retinoschisis of the macula. The genetic analysis revealed the previously undescribed pathogenic variant c.487T>G; p.Trp163Gly in the RS1 gene in all 3 patients. The typical fundus image and OCT pattern, which are absent in the 78-year-old patient, are also present in childhood with the novel RS1 mutation. Our case shows that even with nonspecific changes in the OCT scans, a detailed family history can provide important information on X-linked recessive inheritance and thus for an appropriate molecular genetic diagnosis, so that rare retinal diseases can be diagnosed even at an advanced age.


Assuntos
Retinosquise , Humanos , Masculino , Feminino , Idoso , Criança , Retinosquise/diagnóstico por imagem , Retinosquise/genética , Tomografia de Coerência Óptica , Eletrorretinografia , Análise Mutacional de DNA , Proteínas do Olho/genética , Mutação/genética
2.
J Neurosci ; 41(41): 8618-8631, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34429380

RESUMO

The role of the motor cortex in perceptual and cognitive functions is highly controversial. Here, we investigated the hypothesis that the motor cortex can be instrumental for translating foreign language vocabulary. Human participants of both sexes were trained on foreign language (L2) words and their native language translations over 4 consecutive days. L2 words were accompanied by complementary gestures (sensorimotor enrichment) or pictures (sensory enrichment). Following training, participants translated the auditorily presented L2 words that they had learned. During translation, repetitive transcranial magnetic stimulation was applied bilaterally to a site within the primary motor cortex (Brodmann area 4) located in the vicinity of the arm functional compartment. Responses within the stimulated motor region have previously been found to correlate with behavioral benefits of sensorimotor-enriched L2 vocabulary learning. Compared to sham stimulation, effective perturbation by repetitive transcranial magnetic stimulation slowed down the translation of sensorimotor-enriched L2 words, but not sensory-enriched L2 words. This finding suggests that sensorimotor-enriched training induced changes in L2 representations within the motor cortex, which in turn facilitated the translation of L2 words. The motor cortex may play a causal role in precipitating sensorimotor-based learning benefits, and may directly aid in remembering the native language translations of foreign language words following sensorimotor-enriched training. These findings support multisensory theories of learning while challenging reactivation-based theories.SIGNIFICANCE STATEMENT Despite the potential for sensorimotor enrichment to serve as a powerful tool for learning in many domains, its underlying brain mechanisms remain largely unexplored. Using transcranial magnetic stimulation and a foreign language (L2) learning paradigm, we found that sensorimotor-enriched training can induce changes in L2 representations within the motor cortex, which in turn causally facilitate the translation of L2 words. The translation of recently acquired L2 words may therefore rely not only on auditory information stored in memory or on modality-independent L2 representations, but also on the sensorimotor context in which the words have been experienced.


Assuntos
Córtex Motor/fisiologia , Multilinguismo , Desempenho Psicomotor/fisiologia , Tradução , Aprendizagem Verbal/fisiologia , Vocabulário , Adulto , Feminino , Seguimentos , Humanos , Idioma , Masculino , Estimulação Magnética Transcraniana/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA