Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(5): 109782, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38711449

RESUMO

Ten-eleven translocation (TET) proteins are DNA dioxygenases that mediate active DNA demethylation. TET3 is the most highly expressed TET protein in thymic developing T cells. TET3, either independently or in cooperation with TET1 or TET2, has been implicated in T cell lineage specification by regulating DNA demethylation. However, TET-deficient mice exhibit complex phenotypes, suggesting that TET3 exerts multifaceted roles, potentially by interacting with other proteins. We performed liquid chromatography with tandem mass spectrometry in primary developing T cells to identify TET3 interacting partners in endogenous, in vivo conditions. We discover TET3 interacting partners. Our data establish that TET3 participates in a plethora of fundamental biological processes, such as transcriptional regulation, RNA polymerase elongation, splicing, DNA repair, and DNA replication. This resource brings in the spotlight emerging functions of TET3 and sets the stage for systematic studies to dissect the precise mechanistic contributions of TET3 in shaping T cell biology.

2.
Sci Transl Med ; 16(745): eadj4685, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38691617

RESUMO

Current seasonal influenza virus vaccines induce responses primarily against immunodominant but highly plastic epitopes in the globular head of the hemagglutinin (HA) glycoprotein. Because of viral antigenic drift at these sites, vaccines need to be updated and readministered annually. To increase the breadth of influenza vaccine-mediated protection, we developed an antigenically complex mixture of recombinant HAs designed to redirect immune responses to more conserved domains of the protein. Vaccine-induced antibodies were disproportionally redistributed to the more conserved stalk of the HA without hindering, and in some cases improving, antibody responses against the head domain. These improved responses led to increased protection against homologous and heterologous viral challenges in both mice and ferrets compared with conventional vaccine approaches. Thus, antigenically complex protein mixtures can at least partially overcome HA head domain antigenic immunodominance and may represent a step toward a more universal influenza vaccine.


Assuntos
Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas contra Influenza , Vacinação , Animais , Vacinas contra Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Camundongos , Anticorpos Antivirais/imunologia , Humanos , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Antígenos Virais/imunologia , Feminino , Camundongos Endogâmicos BALB C
3.
Cell Rep ; 43(3): 113881, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38442019

RESUMO

An intriguing effect of short-term caloric restriction (CR) is the expansion of certain stem cell populations, including muscle stem cells (satellite cells), which facilitate an accelerated regenerative program after injury. Here, we utilized the MetRSL274G (MetRS) transgenic mouse to identify liver-secreted plasminogen as a candidate for regulating satellite cell expansion during short-term CR. Knockdown of circulating plasminogen prevents satellite cell expansion during short-term CR. Furthermore, loss of the plasminogen receptor KT (Plg-RKT) is also sufficient to prevent CR-related satellite cell expansion, consistent with direct signaling of plasminogen through the plasminogen receptor Plg-RKT/ERK kinase to promote proliferation of satellite cells. Importantly, we are able to replicate many of these findings in human participants from the CALERIE trial. Our results demonstrate that CR enhances liver protein secretion of plasminogen, which signals directly to the muscle satellite cell through Plg-RKT to promote proliferation and subsequent muscle resilience during CR.


Assuntos
Plasminogênio , Receptores de Superfície Celular , Camundongos , Animais , Humanos , Plasminogênio/metabolismo , Receptores de Superfície Celular/metabolismo , Restrição Calórica , Fígado/metabolismo , Camundongos Transgênicos , Serina Proteases , Proliferação de Células , Músculos/metabolismo
4.
J Fungi (Basel) ; 8(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35448585

RESUMO

Cellular recycling via autophagy-associated proteins is a key catabolic pathway critical to invasive fungal pathogen growth and virulence in the nutrient-limited host environment. Protein kinase A (PKA) is vital for the growth and virulence of numerous fungal pathogens. However, the underlying basis for its regulation of pathogenesis remains poorly understood in any species. Our Aspergillus fumigatus PKA-dependent whole proteome and phosphoproteome studies employing advanced mass spectroscopic approaches identified numerous previously undefined PKA-regulated proteins in catabolic pathways. Here, we demonstrate reciprocal inhibition of autophagy and PKA activity, and identify 16 autophagy-associated proteins as likely novel PKA-regulated effectors. We characterize the novel PKA-phosphoregulated sorting nexin Atg20, and demonstrate its importance for growth, cell wall stress response, and virulence of A. fumigatus in a murine infection model. Additionally, we identify physical and functional interaction of Atg20 with previously characterized sorting nexin Atg24. Furthermore, we demonstrate the importance of additional uncharacterized PKA-regulated putative autophagy-associated proteins to hyphal growth. Our data presented here indicate that PKA regulates the autophagy pathway much more extensively than previously known, including targeting of novel effector proteins with fungal-specific functions important for invasive disease.

5.
Data Brief ; 39: 107609, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34901342

RESUMO

Here, we present quantitative subcellular compartment-specific proteomic data from wildtype and DYT-TOR1A heterozygous mouse embryonic fibroblasts (MEFs) basally and following thapsigargin (Tg) treatment [1]. In this experiment, we generated MEFs from wild type (WT) and a heterozygous DYT-TOR1A mouse model of dystonia. Subsequently, these MEF cultures were treated with either 1 µM Tg or dimethylsulfoxide vehicle (Veh) for six hours. Following treatment, the cells were fractionated into nuclear and cytosolic fractions. Liquid chromatography, tandem mass spectrometry (LC/MS/MS)-based proteomic profiling identified 65,056 unique peptides and 4801 unique proteins across all samples. The data presented here provide subcellular compartment-specific proteomic information within a dystonia model system both basally and under cellular stress. These data can inform future experiments focused on studying the function of TorsinA, the protein encoded by TOR1A, and its potential role in nucleocytoplasmic transport and proteostasis. In addition, the information in this article can also inform future mechanistic studies investigating the relationship between DYT-TOR1A dystonia and the cellular stress response to advance understanding of the pathogenesis of dystonia.

6.
Elife ; 102021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33749590

RESUMO

Mutation of the Wiskott-Aldrich syndrome protein and SCAR homology (WASH) complex subunit, SWIP, is implicated in human intellectual disability, but the cellular etiology of this association is unknown. We identify the neuronal WASH complex proteome, revealing a network of endosomal proteins. To uncover how dysfunction of endosomal SWIP leads to disease, we generate a mouse model of the human WASHC4c.3056C>G mutation. Quantitative spatial proteomics analysis of SWIPP1019R mouse brain reveals that this mutation destabilizes the WASH complex and uncovers significant perturbations in both endosomal and lysosomal pathways. Cellular and histological analyses confirm that SWIPP1019R results in endo-lysosomal disruption and uncover indicators of neurodegeneration. We find that SWIPP1019R not only impacts cognition, but also causes significant progressive motor deficits in mice. A retrospective analysis of SWIPP1019R patients reveals similar movement deficits in humans. Combined, these findings support the model that WASH complex destabilization, resulting from SWIPP1019R, drives cognitive and motor impairments via endo-lysosomal dysfunction in the brain.


Cells in the brain need to regulate and transport the proteins and nutrients stored inside them. They do this by sorting and packaging the contents they want to move in compartments called endosomes, which then send these packages to other parts of the cell. If the components involved in endosome trafficking mutate, this can lead to 'traffic jams' where proteins pile up inside the cell and stop it from working normally. In 2011, researchers found that children who had a mutation in the gene for WASHC4 ­ a protein involved in endosome trafficking ­ had trouble learning. However, it remained unclear how this mutation affects the role of WASCH4 and impacts the behavior of brain cells. To answer this question, Courtland, Bradshaw et al. genetically engineered mice to carry an equivalent mutation to the one identified in humans. Experiments showed that the brain cells of the mutant mice had fewer WASHC4 proteins, and lower levels of other proteins involved in endosome trafficking. The mutant mice also had abnormally large endosomes in their brain cells and elevated levels of proteins that break down the cell's contents, resulting in a build-up of cellular debris. Together, these findings suggest that the mutation causes abnormal trafficking in brain cells. Next, Courtland, Bradshaw et al. compared the behavior of adult and young mice with and without the mutation. Mice carrying the mutation were found to have learning difficulties and showed abnormal movements which became more exaggerated as they aged, similar to people with Parkinson's disease. With this result, Courtland, Bradshaw et al. reviewed the medical records of the patients with the mutation and discovered that these children also had problems with their movement. These findings help explain what is happening inside brain cells when the gene for WASHC4 is mutated, and how disrupting endosome trafficking can lead to behavioral changes. Ultimately, understanding how learning and movement difficulties arise, on a molecular level, could lead to new therapeutic strategies to prevent, manage or treat them in the future.


Assuntos
Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transtornos dos Movimentos/genética , Proteoma/genética , Animais , Cognição , Endossomos , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos , Masculino , Camundongos , Camundongos Transgênicos , Movimento , Proteoma/metabolismo
7.
mBio ; 11(6)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323509

RESUMO

Protein kinase A (PKA) signaling plays a critical role in the growth and development of all eukaryotic microbes. However, few direct targets have been characterized in any organism. The fungus Aspergillus fumigatus is a leading infectious cause of death in immunocompromised patients, but the specific molecular mechanisms responsible for its pathogenesis are poorly understood. We used this important pathogen as a platform for a comprehensive and multifaceted interrogation of both the PKA-dependent whole proteome and phosphoproteome in order to elucidate the mechanisms through which PKA signaling regulates invasive microbial disease. Employing advanced quantitative whole-proteomic and phosphoproteomic approaches with two complementary phosphopeptide enrichment strategies, coupled to an independent PKA interactome analysis, we defined distinct PKA-regulated pathways and identified novel direct PKA targets contributing to pathogenesis. We discovered three previously uncharacterized virulence-associated PKA effectors, including an autophagy-related protein, Atg24; a CCAAT-binding transcriptional regulator, HapB; and a CCR4-NOT complex-associated ubiquitin ligase, Not4. Targeted mutagenesis, combined with in vitro kinase assays, multiple murine infection models, structural modeling, and molecular dynamics simulations, was employed to characterize the roles of these new PKA targets in growth, environmental and antimicrobial stress responses, and pathogenesis in a mammalian system. We also elucidated the molecular mechanisms of PKA regulation for these effectors by defining the functionality of phosphorylation at specific PKA target sites. We have comprehensively characterized the PKA-dependent phosphoproteome and validated PKA targets as direct regulators of infectious disease for the first time in any pathogen, providing new insights into PKA signaling and control over microbial pathogenesis.IMPORTANCE PKA is essential for the virulence of eukaryotic human pathogens. Understanding PKA signaling mechanisms is therefore fundamental to deciphering pathogenesis and developing novel therapies. Despite its ubiquitous necessity, specific PKA effectors underlying microbial disease remain unknown. To address this fundamental knowledge gap, we examined the whole-proteomic and phosphoproteomic impacts of PKA on the deadly fungal pathogen Aspergillus fumigatus to uncover novel PKA targets controlling growth and virulence. We also defined the functional consequences of specific posttranslational modifications of these target proteins to characterize the molecular mechanisms of pathogenic effector regulation by PKA. This study constitutes the most comprehensive analysis of the PKA-dependent phosphoproteome of any human pathogen and proposes new and complex roles played by PKA signaling networks in governing infectious disease.


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/patogenicidade , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Proteoma/metabolismo , Animais , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Fúngicas/genética , Humanos , Camundongos , Fosforilação , Proteoma/genética , Proteômica , Virulência
8.
Mol Microbiol ; 112(1): 62-80, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30927289

RESUMO

Calcium signaling through calcineurin and its major transcription factor (TF), CrzA, is integral to hyphal growth, stress response and virulence of the pathogenic fungus Aspergillus fumigatus, the leading etiology of invasive aspergillosis. Dephosphorylation of CrzA by calcineurin activates the TF, but the specific phosphorylation sites and their roles in the activation/inactivation mechanism are unknown. Mass spectroscopic analysis identified 20 phosphorylation sites, the majority of which were specific to filamentous fungi and distributed throughout the CrzA protein, with particular concentration in a serine-rich region N-terminal to the conserved DNA-binding domain (DBD). Site-directed mutagenesis of phosphorylated residues revealed that CrzA activity during calcium stimulation can only be suppressed by a high degree of phosphorylation in multiple regions of the protein. Our findings further suggest that this regulation is not solely accomplished through control of CrzA nuclear import. Additionally, we demonstrate the importance of the CrzA phosphorylation state in regulating growth, conidiation, calcium and cell wall stress tolerance, and virulence. Finally, we identify two previously undescribed nuclear localization sequences in the DBD. These findings provide novel insight into the phosphoregulation of CrzA which may be exploited to selectively target A. fumigatus.


Assuntos
Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/metabolismo , Transporte Ativo do Núcleo Celular , Aspergilose/microbiologia , Aspergillus fumigatus/genética , Calcineurina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Espectrometria de Massas/métodos , Mutagênese Sítio-Dirigida , Fosforilação , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Virulência/fisiologia
9.
Biochem Biophys Res Commun ; 505(3): 740-746, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30292408

RESUMO

Studies in yeasts have implicated the importance of Kin1 protein kinase, a member of the eukaryotic PAR1/MARK/MELK family, in polarized growth, cell division and septation through coordinated activity with the phosphatase, calcineurin. Kin1 is also required for virulence of the fungal pathogens Cryptococcus neoformans and Fusarium graminearum. Here we show that kin1 deletion in the human fungal pathogen Aspergillus fumigatus does not affect hyphal growth and septation but results in differential susceptibility to antifungals targeting the cell wall and cell membrane. The Δkin1 strain remained virulent in a Galleria mellonella model of invasive aspergillosis. Expression of Kin1 tagged to GFP or RFP showed its stable localization at the septum. Co-localization experiments revealed calcineurin (CnaA) localization on either side of Kin1 at the septum suggesting possible interaction. Bimolecular fluorescence complementation assay confirmed the interaction of Kin1 with CnaA at the hyphal tips and septa in the presence of the antifungal caspofungin. Furthermore, phosphoproteomic analyses for the first time revealed Kin1 as a substrate of calcineurin providing novel insight into Kin1 regulation through calcineurin-mediated dephosphorylation mechanism.


Assuntos
Aspergillus fumigatus/metabolismo , Calcineurina/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/metabolismo , Sequência de Aminoácidos , Antifúngicos/farmacologia , Aspergilose/microbiologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Caspofungina/farmacologia , Proteínas Fúngicas/genética , Humanos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Mutação , Ligação Proteica , Homologia de Sequência de Aminoácidos , Virulência/genética
10.
J Biol Chem ; 293(17): 6449-6459, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29530981

RESUMO

The insulin-like growth factor 1 receptor (IGF1R) is a receptor tyrosine kinase with critical roles in various biological processes. Recent results from clinical trials targeting IGF1R indicate that IGF1R signaling pathways are more complex than previously thought. Moreover, it has become increasingly clear that the function of many proteins can be understood only in the context of a network of interactions. To that end, we sought to profile IGF1R-protein interactions with the proximity-labeling technique BioID. We applied BioID by generating a HEK293A cell line that stably expressed the BirA* biotin ligase fused to the IGF1R. Following stimulation by IGF1, biotinylated proteins were analyzed by MS. This screen identified both known and previously unknown interactors of IGF1R. One of the novel interactors was sorting nexin 6 (SNX6), a protein that forms part of the retromer complex, which is involved in intracellular protein sorting. Using co-immunoprecipitation, we confirmed that IGF1R and SNX6 physically interact. SNX6 knockdown resulted in a dramatic diminution of IGF1-mediated ERK1/2 phosphorylation, but did not affect IGF1R internalization. Bioluminescence resonance energy transfer experiments indicated that the SNX6 knockdown perturbed the association between IGF1R and the key adaptor proteins insulin receptor substrate 1 (IRS1) and SHC adaptor protein 1 (SHC1). Intriguingly, even in the absence of stimuli, SNX6 overexpression significantly increased Akt phosphorylation. Our study confirms the utility of proximity-labeling methods, such as BioID, to screen for interactors of cell-surface receptors and has uncovered a role of one of these interactors, SNX6, in the IGF1R signaling cascade.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Sistema de Sinalização das MAP Quinases , Receptores de Somatomedina/metabolismo , Nexinas de Classificação/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1 , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Nexinas de Classificação/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Coloração e Rotulagem
11.
J Cell Sci ; 131(3)2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29222113

RESUMO

Myosins are critical motor proteins that contribute to the secretory pathway, polarized growth, and cytokinesis. The globular tail domains of class V myosins have been shown to be important for cargo binding and actin cable organization. Additionally, phosphorylation plays a role in class V myosin cargo choice. Our previous studies on the class V myosin MyoE in the fungal pathogen Aspergillus fumigatus confirmed its requirement for normal morphology and virulence. However, the domains and molecular mechanisms governing the functions of MyoE remain unknown. Here, by analyzing tail mutants, we demonstrate that the tail is required for radial growth, conidiation, septation frequency and MyoE's location at the septum. Furthermore, MyoE is phosphorylated at multiple residues in vivo; however, alanine substitution mutants revealed that no single phosphorylated residue was critical. Importantly, in the absence of the phosphatase calcineurin, an additional residue was phosphorylated in its tail domain. Mutation of this tail residue led to mislocalization of MyoE from the septa. This work reveals the importance of the MyoE tail domain and its phosphorylation/dephosphorylation in the growth and morphology of A. fumigatus.


Assuntos
Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento , Miosina Tipo V/química , Miosina Tipo V/metabolismo , Acetilação , Actinas/metabolismo , Calcineurina/metabolismo , Sequência Conservada , Microtúbulos/metabolismo , Modelos Biológicos , Proteínas Mutantes/metabolismo , Fenótipo , Fosforilação , Domínios Proteicos , Subunidades Proteicas/metabolismo , Transporte Proteico , Deleção de Sequência , Esporos Fúngicos/metabolismo , Relação Estrutura-Atividade
12.
FEBS Lett ; 591(22): 3730-3744, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29067690

RESUMO

Protein kinase A (PKA) signaling is essential for growth and virulence of the fungal pathogen Aspergillus fumigatus. Little is known concerning the regulation of this pathway in filamentous fungi. Employing liquid chromatography-tandem mass spectroscopy, we identified novel phosphorylation sites on the regulatory subunit PkaR, distinct from those previously identified in mammals and yeasts, and demonstrated the importance of two phosphorylation clusters for hyphal growth and cell wall-stress response. We also identified key differences in the regulation of PKA subcellular localization in A. fumigatus compared with other species. This is the first analysis of the phosphoregulation of a PKA regulatory subunit in a filamentous fungus and uncovers critical mechanistic differences between PKA regulation in filamentous fungi compared with mammals and yeast species, suggesting divergent targeting opportunities.


Assuntos
Aspergillus fumigatus/crescimento & desenvolvimento , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Sítios de Ligação , Parede Celular/metabolismo , Cromatografia Líquida , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Mutação , Fosforilação , Espectrometria de Massas em Tandem
13.
Biochem Biophys Res Commun ; 485(2): 221-226, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28238781

RESUMO

Aspergillus fumigatus, the main etiological agent of invasive aspergillosis, is a leading cause of death in immunocompromised patients. Septins, a conserved family of GTP-binding proteins, serve as scaffolding proteins to recruit enzymes and key regulators to different cellular compartments. Deletion of the A. fumigatus septin aspB increases susceptibility to the echinocandin antifungal caspofungin. However, how AspB mediates this response to caspofungin is unknown. Here, we characterized the AspB interactome under basal conditions and after exposure to a clinically relevant concentration of caspofungin. While A. fumigatus AspB interacted with 334 proteins, including kinases, cell cycle regulators, and cell wall synthesis-related proteins under basal growth conditions, caspofungin exposure altered AspB interactions. A total of 69 of the basal interactants did not interact with AspB after exposure to caspofungin, and 54 new interactants were identified following caspofungin exposure. We generated A. fumigatus deletion strains for 3 proteins (ArpB, Cyp4, and PpoA) that only interacted with AspB following exposure to caspofungin that were previously annotated as induced after exposure to antifungal agents, yet only PpoA was implicated in the response to caspofungin. Taken together, we defined how the septin AspB interactome is altered in the presence of a clinically relevant antifungal.


Assuntos
Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Equinocandinas/farmacologia , Proteínas Fúngicas/metabolismo , Lipopeptídeos/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Septinas/metabolismo , Aspergilose/microbiologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Caspofungina , Proteínas Fúngicas/genética , Deleção de Genes , Humanos , Septinas/genética
14.
mBio ; 8(1)2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28174315

RESUMO

Invasive aspergillosis (IA), caused by the filamentous fungal pathogen Aspergillus fumigatus, is a major cause of death among immunocompromised patients. The cyclic AMP/protein kinase A (PKA) signaling pathway is essential for hyphal growth and virulence of A. fumigatus, but the mechanism of regulation of PKA remains largely unknown. Here, we discovered a novel mechanism for the regulation of PKA activity in A. fumigatus via phosphorylation of key residues within the major catalytic subunit, PkaC1. Phosphopeptide enrichment and tandem mass spectrometry revealed the phosphorylation of PkaC1 at four sites (S175, T331, T333, and T337) with implications for important and diverse roles in the regulation of A. fumigatus PKA. While the phosphorylation at one of the residues (T333) is conserved in other species, the identification of three other residues represents previously unknown PKA phosphoregulation in A. fumigatus Site-directed mutagenesis of the phosphorylated residues to mimic or prevent phosphorylation revealed dramatic effects on kinase activity, growth, conidiation, cell wall stress response, and virulence in both invertebrate and murine infection models. Three-dimensional structural modeling of A. fumigatus PkaC1 substantiated the positive or negative regulatory roles for specific residues. Suppression of PKA activity also led to downregulation of PkaC1 protein levels in an apparent novel negative-feedback mechanism. Taken together, we propose a model in which PkaC1 phosphorylation both positively and negatively modulates its activity. These findings pave the way for future discovery of fungus-specific aspects of this key signaling network. IMPORTANCE: Our understanding of signal transduction networks in pathogenic fungi is limited, despite the increase in invasive fungal infections and rising mortality rates in the immunosuppressed patient population. Because PKA is known to be essential for hyphal growth and virulence of A. fumigatus, we sought to identify fungus-specific regulatory mechanisms governing PKA activity. In this study, we identify, for the first time, a novel mechanism for the regulation of PKA signaling in which differential phosphorylation of the PkaC1 catalytic subunit can lead to either positive or negative regulation of activity. Furthermore, we show that inactivation of PKA signaling leads to downregulation of catalytic subunit protein levels in a negative-feedback mechanism distinct from expression patterns previously reported in the yeasts. Our findings represent a divergence in the regulation of PKA signaling in A. fumigatus, which could potentially be exploited as a target and also open the avenue for discovery of fungus-specific downstream effectors of PKA.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Processamento de Proteína Pós-Traducional , Animais , Aspergilose/microbiologia , Aspergilose/patologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Domínio Catalítico , Proteínas Quinases Dependentes de AMP Cíclico/genética , Análise Mutacional de DNA , Modelos Animais de Doenças , Lepidópteros , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosforilação , Conformação Proteica , Estresse Fisiológico , Espectrometria de Massas em Tandem , Virulência
15.
Front Microbiol ; 7: 997, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446037

RESUMO

Septins are a conserved family of GTPases that form hetero-oligomeric complexes and perform diverse functions in higher eukaryotes, excluding plants. Our previous studies in the human fungal pathogen Aspergillus fumigatus revealed that the core septin, AspB, a CDC3 ortholog, is required for septation, conidiation, and conidial cell wall organization. Although AspB is important for these cellular functions, nothing is known about the role of kinases or phosphatases in the posttranslational regulation and localization of septins in A. fumigatus. In this study, we assessed the function of the Gin4 and Cla4 kinases and the PP2A regulatory subunit ParA, in the regulation of AspB using genetic and phosphoproteomic approaches. Gene deletion analyses revealed that Cla4 and ParA are indispensable for hyphal extension, and Gin4, Cla4, and ParA are each required for conidiation and normal septation. While deletion of gin4 resulted in larger interseptal distances and hypervirulence, a phenotype mimicking aspB deletion, deletion of cla4 and parA caused hyperseptation without impacting virulence, indicating divergent roles in regulating septation. Phosphoproteomic analyses revealed that AspB is phosphorylated at five residues in the GTPase domain (S134, S137, S247, T297, and T301) and two residues at its C-terminus (S416 and S461) in the wild-type, Δgin4 and Δcla4 strains. However, concomitant with the differential localization pattern of AspB and hyperseptation in the ΔparA strain, AspB remained phosphorylated at two additional residues, T68 in the N-terminal polybasic region and S447 in the coiled-coil domain. Generation of nonphosphorylatable and phosphomimetic strains surrounding each differentially phosphorylated residue revealed that only AspB (mt) -T68E showed increased interseptal distances, suggesting that dephosphorylation of T68 is important for proper septation. This study highlights the importance of septin phosphorylation/dephosphorylation in the regulation of A. fumigatus hyphal septation.

16.
J Med Chem ; 57(5): 1902-13, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23672667

RESUMO

A boronic acid moiety was found to be a critical pharmacophore for enhanced in vitro potency against wild-type hepatitis C replicons and known clinical polymorphic and resistant HCV mutant replicons. The synthesis, optimization, and structure-activity relationships associated with inhibition of HCV replication in a subgenomic replication system for a series of non-nucleoside boron-containing HCV RNA-dependent RNA polymerase (NS5B) inhibitors are described. A summary of the discovery of 3 (GSK5852), a molecule which entered clinical trials in subjects infected with HCV in 2011, is included.


Assuntos
Antivirais/farmacologia , Ácidos Borônicos/química , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Antivirais/química , Descoberta de Drogas , Farmacorresistência Viral/genética , Hepacivirus/enzimologia , Hepacivirus/genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/antagonistas & inibidores
17.
J Appl Physiol (1985) ; 112(11): 1940-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22422801

RESUMO

There is currently no direct, facile method to determine total-body skeletal muscle mass for the diagnosis and treatment of skeletal muscle wasting conditions such as sarcopenia, cachexia, and disuse. We tested in rats the hypothesis that the enrichment of creatinine-(methyl-d(3)) (D(3)-creatinine) in urine after a defined oral tracer dose of D(3)-creatine can be used to determine creatine pool size and skeletal muscle mass. We determined 1) an oral tracer dose of D(3)-creatine that was completely bioavailable with minimal urinary spillage and sufficient enrichment in the body creatine pool for detection of D(3)-creatine in muscle and D(3)-creatinine in urine, and 2) the time to isotopic steady state. We used cross-sectional studies to compare total creatine pool size determined by the D(3)-creatine dilution method to lean body mass determined by independent methods. The tracer dose of D(3)-creatine (<1 mg/rat) was >99% bioavailable with 0.2-1.2% urinary spillage. Isotopic steady state was achieved within 24-48 h. Creatine pool size calculated from urinary D(3)-creatinine enrichment at 72 h significantly increased with muscle accrual in rat growth, significantly decreased with dexamethasone-induced skeletal muscle atrophy, was correlated with lean body mass (r = 0.9590; P < 0.0001), and corresponded to predicted total muscle mass. Total-body creatine pool size and skeletal muscle mass can thus be accurately and precisely determined by an orally delivered dose of D(3)-creatine followed by the measurement of D(3)-creatinine enrichment in a single urine sample and is promising as a noninvasive tool for the clinical determination of skeletal muscle mass.


Assuntos
Creatina/farmacocinética , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Animais , Creatina/sangue , Creatina/urina , Masculino , Taxa de Depuração Metabólica/efeitos dos fármacos , Taxa de Depuração Metabólica/fisiologia , Metilação , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
18.
J Am Soc Mass Spectrom ; 19(2): 239-45, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17596960

RESUMO

Characterization of protein-ligand complexes by nondenaturing mass spectrometry provides direct evidence of drug-like molecules binding with potential therapeutic targets. Typically, protein-ligand complexes to be analyzed contain buffer salts, detergents, and other additives to enhance protein solubility, all of which make the sample unable to be analyzed directly by electrospray ionization mass spectrometry. This work describes an in-line gel-filtration method that has been automated and optimized. Automation was achieved using commercial HPLC equipment. Gel column parameters that were optimized include: column dimensions, flow rate, packing material type, particle size, and molecular weight cut-off. Under optimal conditions, desalted protein ions are detected 4 min after injection and the analysis is completed in 20 min. The gel column retains good performance even after >200 injections. A demonstration for using the in-line gel-filtration system is shown for monitoring the exchange of fatty acids from the pocket of a nuclear hormone receptor, peroxisome proliferator activator-delta (PPARdelta) with a tool compound. Additional utilities of in-line gel-filtration mass spectrometry system will also be discussed.


Assuntos
Cromatografia em Gel/instrumentação , Cromatografia em Gel/métodos , Espectrometria de Massas/métodos , Proteínas/análise , Distinções e Prêmios , Cromatografia Líquida de Alta Pressão/instrumentação , Desenho de Fármacos , Indústria Farmacêutica/instrumentação , Ligantes
19.
Endocr Res ; 30(4): 775-85, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15666825

RESUMO

The nuclear receptor Steroidogenic Factor 1 (SF1) plays a critical role in the development of the adrenal gland and gonads, and in sexual differentiation. SF1 performs this pivotal function through the regulation of hormone expression that is essential for organogenesis and endocrine homeostasis. SF1 is a member of a nuclear receptor subclass that contains LRH1 and the Drosophila receptor FTZ-F1. To date, a natural ligand has not been reported for any member of this subfamily. Here we report the crystallization and characterization of the ligand-binding domain (LBD) of human SF1 from two different crystal forms: a binary complex with fortuitous ligand and a ternary complex with the same ligand and a peptide containing a motif of a nuclear receptor cofactor. The structural determination of the binary complex required the use of sulfur SAD phasing, a relatively new technique that uses anomalous diffraction from the endogenous sulfur atoms present in the protein. The structure of the ternary complex was determined by multiple wavelength anomalous diffraction (MAD) using seleno-methionine substituted SF1. Preliminary analysis suggested SF1 contained a fortuitous ligand in the binding pocket. This ligand may account for the relatively high basal activity observed for SF1 in cofactor recruitment and cell-based assays.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Ligantes , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Cristalização , Proteínas de Homeodomínio , Humanos , Modelos Moleculares , Conformação Molecular , Coativador 2 de Receptor Nuclear , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares , Fator Esteroidogênico 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...