Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 127: 105944, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35905644

RESUMO

Seven known isoquinoline alkaloids 1-7 were isolated from the root extracts of Berberis parkeriana Schneid. Nine new derivatives 8-16 of one of the isolated compounds, jatrorrhizine (7), were synthesized. All the isolated as well as derivatized compounds were evaluated for their in-vitro acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) inhibitory activity. Functionalized compounds selectively exhibited a potent-to-moderate activity with IC50 = 5.5 ± 0.3-124.5 ± 0.4 µM against butyrylcholinesterase enzyme. Among them, compound 15 was a potent BChE inhibitor (IC50 = 5.5 ± 0.3 µM), as compared to the standard drug galantamine hydrobromide (IC50 = 40.83 ± 0.37 µM). Active compounds were further subjected to kinetic, and molecular docking studies to predict their modes of inhibition, and interactions with the receptor (BChE), respectively. Enzyme kinetics studies showed that compounds 9 (IC50 = 25.3 ± 0.5 µM), and 14 (IC50 = 23.9 ± 0.5 µM) were non-competitive inhibitors, while compound 15 exhibited a competitive inhibition. In addition, these compounds were found to be non-cytotoxic against human fibroblast (BJ) cell line, except 9 (IC50 = 17.1 ± 1.0 µM), and 10 (IC50 = 18.4 ± 0.3 µM). Inhibition of cholinesterases is an important approach for development of drugs against Alzheimer's disease, and thus discoveries presented here deserve further investigation.


Assuntos
Berberis , Butirilcolinesterase , Acetilcolinesterase/metabolismo , Berberis/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
2.
Bioorg Med Chem ; 27(18): 4030-4040, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31378596

RESUMO

A series of benzamide derivatives 1-12 with various functional groups (-H, -Br, -F, -OCH3, -OC2H5, and -NO2) was synthesized using an economic, and facile Microwave-Assisted Organic Synthesis, and evaluated for acetylcholinesterase (ACHE) and butyrylcholinesterase (BCHE) activity in vitro. Structure-activity relationship showed that the substitution of -Br group influenced the inhibitory activity against BCHE enzyme. Synthesized compounds were found to be selective inhibitors of BCHE. In addition, all compounds 1-12 were found to be non-cytotoxic, as compared to the standard cycloheximide (IC50 = 0.8 ±â€¯0.2 µM). Among them, compound 3 revealed the most potent BCHE inhibitory activity (IC50 = 0.8 ±â€¯0.6 µM) when compared with the standard galantamine hydrobromide (IC50 = 40.83 ±â€¯0.37 µM). Enzyme kinetic studies indicated that compounds 1, 3-4, and 7-8 showed a mixed mode of inhibition against BCHE, while compounds 2, 5-6 and 9 exhibited an uncompetitive pattern of inhibition. Molecular docking studies further highlighted the interaction of these inhibitors with catalytically important amino acid residues, such as Glu197, Hip438, Phe329, and many others.


Assuntos
Benzamidas/uso terapêutico , Inibidores da Colinesterase/uso terapêutico , Simulação de Acoplamento Molecular/métodos , Benzamidas/farmacologia , Inibidores da Colinesterase/farmacologia , Humanos , Cinética , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...