Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Space Res (Amst) ; 38: 53-58, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37481308

RESUMO

Sterols are the main components of the plasma membrane and are involved in various plant membrane functions. Azuki bean (Vigna angularis (Wild.) Ohwi et Ohashi) seedlings were cultivated under hypergravity conditions, and changes in the levels and composition of membrane sterols in their epicotyls were analyzed. Under hypergravity conditions at 300 g, the levels of steryl glycosides and acyl steryl glycosides per unit length and per gram fresh weight greatly increased, which accounted for an increase in the total sterol levels. Stigmasterol, ß-sitosterol, and campesterol were the most abundant sterols. Hypergravity decreased the proportion of stigmasterol but increased that of ß-sitosterol. The fatty chains of acyl steryl glycosides mainly consisted of palmitic acid (C16:0), stearic acid (C18:0), linoleic acid (C18:2), and α-linolenic acid (C18:3), and their proportions were not modified under hypergravity conditions. In addition, the density of membrane microdomains, visualized with anti-Flotillin 1 antibody per unit area, increased by hypergravity, suggesting that lipid raft formation was stimulated. These results support the hypothesis that lipid rafts are involved in plant response and resistance to gravity.


Assuntos
Hipergravidade , Vigna , Glicosídeos , Estigmasterol , Esteróis , Microdomínios da Membrana
2.
Life (Basel) ; 13(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36836828

RESUMO

Lead (Pb) is a widespread heavy metal pollutant that interferes with plant growth. In this study, we investigated the effects of Pb on the mechanical and chemical properties of cell walls and on the growth of coleoptiles of rice (Oryza sativa L.) seedlings grown in the air (on moistened filter paper) and underwater (submerged condition). Coleoptile growth of air-grown seedlings was reduced by 40% by the 3 mM Pb treatment, while that of water-grown ones was reduced by 50% by the 0.5 mM Pb. Although the effective concentration of Pb for growth inhibition of air-grown coleoptiles was much higher than that of water-grown ones, Pb treatment significantly decreased the mechanical extensibility of the cell wall in air- and water-grown coleoptiles, when it inhibited their growth. Among the chemical components of coleoptile cell walls, the amounts of cell wall polysaccharides per unit fresh weight and unit length of coleoptile, which represent the thickness of the cell wall, were significantly increased in response to the Pb treatment (3 mM and 0.5 mM Pb for air- and water-grown seedlings, respectively), while the levels of cell wall-bound diferulic acids (DFAs) and ferulic acids (FAs) slightly decreased. These results indicate that Pb treatment increased the thickness of the cell wall but not the phenolic acid-mediated cross-linking structures within the cell wall in air- and water-grown coleoptiles. The Pb-induced cell wall thickening probably causes the mechanical stiffening of the cell wall and thus decreases cell wall extensibility. Such modifications of cell wall properties may be associated with the inhibition of coleoptile growth. The results of this study provide a new finding that Pb-induced cell wall remodeling contributes to the regulation of plant growth under Pb stress conditions via the modification of the mechanical property of the cell wall.

3.
Plants (Basel) ; 12(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679078

RESUMO

The exogenous application of ethylene or 1-aminocyclopropane-1-carboxylic acid (ACC), the biosynthetic precursor for ethylene, to plants decreases the capacity of the cell wall to extend, thereby inhibiting stem elongation. In this study, the mechanism by which the extensibility of cell walls decreases in ACC-treated azuki bean epicotyls was studied. ACC decreased the total extensibility of cell walls, and such a decrease was due to the decrease in irreversible extensibility. ACC increased the molecular mass of xyloglucans but decreased the activity of xyloglucan-degrading enzymes. The expression of VaXTHS4, which only exhibits hydrolase activity toward xyloglucans, was downregulated by ACC treatment, whereas that of VaXTH1 or VaXTH2, which exhibits only transglucosylase activity toward xyloglucans, was not affected by ACC treatment. The suppression of xyloglucan-degrading activity by downregulating VaXTHS4 expression may be responsible for the increase in the molecular mass of xyloglucan. Our results suggest that the modification of xyloglucan metabolism is necessary to decrease cell wall extensibility, thereby inhibiting the elongation growth of epicotyls in ACC-treated azuki bean seedlings.

4.
Life (Basel) ; 12(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36295039

RESUMO

Terrestrial plants respond to and resist gravitational force. The response is termed "gravity resistance", and centrifugal hypergravity conditions are efficient for investigating its nature and mechanism. A functional screening of Arabidopsis T-DNA insertion lines for the suppression rate of elongation growth of hypocotyls under hypergravity conditions was performed in this study to identify the genes required for gravity resistance. As a result, we identified PEPTIDYL-tRNA HYDROLASE II (PTH2). In the wild type, elongation growth was suppressed by hypergravity, but this did not happen in the pth2 mutant. Lateral growth, dynamics of cortical microtubules, mechanical properties of cell walls, or cell wall thickness were also not affected by hypergravity in the pth2 mutant. In other words, the pth2 mutant did not show any significant hypergravity responses. However, the gravitropic curvature of hypocotyls of the pth2 mutant was almost equal to that of the wild type, indicating that the PTH2 gene is not required for gravitropism. It is suggested by these results that PTH2 is responsible for the critical processes of gravity resistance in Arabidopsis hypocotyls.

5.
Plants (Basel) ; 11(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35161447

RESUMO

How microgravity in space influences plant cell growth is an important issue for plant cell biology as well as space biology. We investigated the role of cortical microtubules in the stimulation of elongation growth in Arabidopsis (Arabidopsis thaliana) hypocotyls under microgravity conditions with the Resist Tubule space experiment. The epidermal cells in the lower half of the hypocotyls of wild-type Columbia were longer in microgravity than at on-orbit 1 g, which precipitated an increase in the entire hypocotyl length. In the apical region, cortical microtubules adjacent to the outer tangential wall were predominantly transverse to the long axis of the cell, whereas longitudinal microtubules were predominant in the basal region. In the 9th to 12th epidermal cells (1 to 3 mm) from the tip, where the modification of microtubule orientation from transverse to longitudinal directions (reorientation) occurred, cells with transverse microtubules increased, whereas those with longitudinal microtubules decreased in microgravity, and the average angle with respect to the transverse cell axis decreased, indicating that the reorientation was suppressed in microgravity. The expression of tubulin genes was suppressed in microgravity. These results suggest that under microgravity conditions, the expression of genes related to microtubule formation was downregulated, which may cause the suppression of microtubule reorientation from transverse to longitudinal directions, thereby stimulating cell elongation in Arabidopsis hypocotyls.

6.
J Plant Physiol ; 260: 153409, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33774509

RESUMO

Sugar accumulation in maize (Zea mays) coleoptile and mesocotyl cells was suppressed when etiolated seedlings were subjected to white light irradiation. Regulation mechanisms of sugar accumulation by light in cells of both organs were studied. Sucrose exudation from the endosperm was suppressed in light-treated seedlings. In addition, the activities and transcript levels of sucrose-phosphate synthase (SPS) in scutella were decreased following light irradiation. These results suggest that sucrose exudation from the endosperm is decreased by the suppression of SPS activities via downregulation of its gene expression. In coleoptiles and mesocotyls, light irradiation also decreased the activities and transcript levels of cell wall-bound invertase, suggesting that phloem unloading processes were suppressed. Thus, inhibition of both sucrose loading from the endosperm and sucrose unloading in coleoptiles and mesocotyls may be involved in the suppression of sugar accumulation in coleoptiles and mesocotyls irradiated with white light.


Assuntos
Cotilédone/metabolismo , Estiolamento , Luz , Sacarose/metabolismo , Zea mays/metabolismo , Plântula/metabolismo , Plântula/efeitos da radiação , Zea mays/efeitos da radiação
7.
Plants (Basel) ; 9(5)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380659

RESUMO

Plants respond to and resist gravitational acceleration, but the mechanism of signal perception in the response is unknown. We studied the role of MCA (mid1-complementing activity) proteins in gravity perception by analyzing the expression of the MCA1 and MCA2 genes, and the growth of hypocotyls of mca mutants, under hypergravity conditions in the dark. An MCA1 promoter::GUS fusion reporter gene construct (MCA1p::GUS) and MCA2p::GUS were expressed almost universally in etiolated seedlings. Under hypergravity conditions, the expression levels of both genes increased compared with that under the 1 g condition, and remained higher, especially in the basal supporting region. On the other hand, mca-null and MCA-overexpressing seedlings showed normal growth under the 1 g condition. Hypergravity suppressed elongation growth of hypocotyls, but this effect was reduced in hypocotyls of mca-null mutants compared with the wild type. In contrast, MCA-overexpressing seedlings were hypersensitive to increased gravity; suppression of elongation growth was detected at a lower gravity level than that in the wild type. These results suggest that MCAs are involved in the perception of gravity signals in plants, and may be responsible for resistance to hypergravity.

8.
Astrobiology ; 20(7): 820-829, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32207981

RESUMO

The plant cell wall provides each cell with structural support and mechanical strength, and thus, it plays an important role in supporting the plant body against the gravitational force. We investigated the effects of microgravity on the composition of cell wall polysaccharides and on the expression levels of genes involved in cell wall metabolism using rice shoots cultivated under artificial 1 g and microgravity conditions on the International Space Station. The bulk amount of the cell wall obtained from microgravity-grown shoots was comparable with that from 1 g-grown shoots. However, the analysis of sugar constituents of matrix polysaccharides showed that microgravity specifically reduced the amount of glucose (Glc)-containing polysaccharides such as 1,3:1,4-ß-glucans, in shoot cell walls. The expression level of a gene for endo-1,3:1,4-ß-glucanase, which hydrolyzes 1,3:1,4-ß-glucans, largely increased under microgravity conditions. However, the expression levels of genes involved in the biosynthesis of 1,3:1,4-ß-glucans were almost the same under both gravity conditions. On the contrary, microgravity scarcely affected the level and the metabolism of arabinoxylans. These results suggest that a microgravity environment promotes the breakdown of 1,3:1,4-ß-glucans, which, in turn, causes the reduced level of these polysaccharides in growing rice shoots. Changes in 1,3:1,4-ß-glucan level may be involved in the modification of mechanical properties of cell walls under microgravity conditions in space.


Assuntos
Parede Celular/química , Oryza/crescimento & desenvolvimento , Ausência de Peso/efeitos adversos , Xilanos/metabolismo , beta-Glucanas/metabolismo , Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/enzimologia , Parede Celular/metabolismo , Endo-1,3(4)-beta-Glucanase/genética , Endo-1,3(4)-beta-Glucanase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Oryza/enzimologia , Oryza/genética , Brotos de Planta/química , Brotos de Planta/citologia , Brotos de Planta/enzimologia , Brotos de Planta/crescimento & desenvolvimento , Voo Espacial , Xilanos/isolamento & purificação , beta-Glucanas/isolamento & purificação
9.
Physiol Plant ; 162(1): 135-144, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28862767

RESUMO

We carried out a space experiment, denoted as Aniso Tubule, to examine the effects of microgravity on the growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls, using lines in which microtubules are visualized by labeling tubulin or microtubule-associated proteins (MAPs) with green fluorescent protein (GFP). In all lines, GFP-tubulin6 (TUB6)-, basic proline-rich protein1 (BPP1)-GFP- and spira1-like3 (SP1L3)-GFP-expressing using a constitutive promoter, and spiral2 (SPR2)-GFP- and GFP-65 kDa MAP-1 (MAP65-1)-expressing using a native promoter, the length of hypocotyls grown under microgravity conditions in space was longer than that grown at 1 g conditions on the ground. In contrast, the diameter of hypocotyls grown under microgravity conditions was smaller than that of the hypocotyls grown at 1 g. The percentage of cells with transverse microtubules was increased under microgravity conditions, irrespective of the lines. Also, the average angle of the microtubules with respect to the transverse cell axis was decreased in hypocotyls grown under microgravity conditions. When GFP fluorescence was quantified in hypocotyls of GFP-MAP65-1 and SPR2-GFP lines, microgravity increased the levels of MAP65-1, which appears to be involved in the maintenance of transverse microtubule orientation. However, the levels of SPR2 under microgravity conditions were comparable to those at 1 g. These results suggest that the microgravity-induced increase in the levels of MAP65-1 is involved in increase in the transverse microtubules, which may lead to modification of growth anisotropy, thereby developing longer and thinner hypocotyls under microgravity conditions in space.


Assuntos
Anisotropia , Arabidopsis/crescimento & desenvolvimento , Meio Ambiente Extraterreno , Hipocótilo/crescimento & desenvolvimento , Microtúbulos/metabolismo , Ausência de Peso , Fluorescência , Hipocótilo/anatomia & histologia , Epiderme Vegetal/citologia , Plântula/crescimento & desenvolvimento
10.
Plant Signal Behav ; 13(1): e1422468, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29286875

RESUMO

The body shape of plants varied in proportion to the logarithm of the magnitude of gravity in the range from microgravity to hypergravity to resist the gravitational force. Here we discuss the roles of cortical microtubule and 65 kDa microtubule-associated protein-1 (MAP65-1) in gravity-induced modification of growth anisotropy. Microgravity stimulated elongation growth and suppressed lateral expansion in shoot organs, such as hypocotyls and epicotyls. On the other hand, hypergravity inhibited elongation growth and promoted lateral expansion in shoot organs. The number of cells with transverse microtubules was increased by microgravity, but decreased by hypergravity. Furthermore, the levels of MAP65-1, which is involved in the maintenance of the transverse microtubule orientation, were increased by microgravity, but decreased by hypergravity. Therefore, the regulation of orientation of cortical microtubules via changes in the levels of MAP65-1 may contribute to the modification of the body shape of plants to resist the gravitational force.


Assuntos
Hipergravidade , Microtúbulos/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Ausência de Peso , Arabidopsis/crescimento & desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Plantas Geneticamente Modificadas
11.
Physiol Plant ; 161(2): 285-293, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28573759

RESUMO

We investigated the effects of microgravity environment on growth and plant hormone levels in dark-grown rice shoots cultivated in artificial 1 g and microgravity conditions on the International Space Station (ISS). Growth of microgravity-grown shoots was comparable to that of 1 g-grown shoots. Endogenous levels of indole-3-acetic acid (IAA) in shoots remained constant, while those of abscisic acid (ABA), jasmonic acid (JA), cytokinins (CKs) and gibberellins (GAs) decreased during the cultivation period under both conditions. The levels of auxin, ABA, JA, CKs and GAs in rice shoots grown under microgravity conditions were comparable to those under 1 g conditions. These results suggest microgravity environment in space had minimal impact on levels of these plant hormones in rice shoots, which may be the cause of the persistence of normal growth of shoots under microgravity conditions. Concerning ethylene, the expression level of a gene for 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, the key enzyme in ethylene biosynthesis, was reduced under microgravity conditions, suggesting that microgravity may affect the ethylene production. Therefore, ethylene production may be responsive to alterations of the gravitational force.


Assuntos
Oryza/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Ausência de Peso , Expressão Gênica , Ácidos Indolacéticos/metabolismo
12.
J Plant Physiol ; 191: 29-35, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26720211

RESUMO

We performed a phenotypic screening of confirmed homozygous T-DNA insertion lines in Arabidopsis for cell wall extensibility, in an attempt to identify genes involved in the regulation of cell wall mechanical properties. Seedlings of each line were cultivated and the cell wall extensibility of their hypocotyls was measured with a tensile tester. Hypocotyls of lines with known cell wall-related genes showed higher or lower extensibility than those of the wild-type at high frequency, indicating that the protocol used was effective. In the first round of screening of randomly selected T-DNA insertion lines, we identified ANTHOCYANINLESS2 (ANL2), a gene involved in the regulation of cell wall mechanical properties. In the anl2 mutant, the cell wall extensibility of hypocotyls was significantly lower than that of the wild-type. Levels of cell wall polysaccharides per hypocotyl, particularly cellulose, increased in anl2. Microarray analysis showed that in anl2, expression levels of the major peroxidase genes also increased. Moreover, the activity of ionically wall-bound peroxidases clearly increased in anl2. The activation of peroxidases as well as the accumulation of cell wall polysaccharides may be involved in decreased cell wall extensibility. The approach employed in the present study could contribute to our understanding of the mechanisms underlying the regulation of cell wall mechanical properties.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Parede Celular/genética , DNA Bacteriano/genética , Genes de Plantas , Proteínas de Homeodomínio/genética , Mutagênese Insercional/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fenômenos Biomecânicos , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Peroxidase/metabolismo , Fenótipo , Folhas de Planta/metabolismo
13.
PLoS One ; 10(9): e0137992, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26378793

RESUMO

Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions.


Assuntos
Parede Celular/metabolismo , Parede Celular/fisiologia , Ácidos Cumáricos/metabolismo , Oryza/metabolismo , Oryza/fisiologia , Brotos de Planta/metabolismo , Brotos de Planta/fisiologia , Lignina/metabolismo , Peroxidase/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Fenômenos Fisiológicos/fisiologia , Polissacarídeos , Voo Espacial/métodos , Ausência de Peso
14.
Phytochemistry ; 112: 84-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25236694

RESUMO

Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants.


Assuntos
Parede Celular , Gravitação , Plantas , Parede Celular/metabolismo , Hipergravidade , Plantas/metabolismo , Ausência de Peso
15.
J Plant Physiol ; 169(3): 262-7, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22118877

RESUMO

The relationship between the formation of cell wall-bound ferulic acid (FA) and diferulic acid (DFA) and the change in activities of phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) was studied in rice shoots. The length and the fresh mass of shoots increased during the growth period from day 4 to 6, while coleoptiles ceased elongation growth on day 5. The amounts of FA and DFA isomers as well as cell wall polysaccharides continued to increase during the whole period. The activities of PAL and CW-PRX greatly increased in the same manner during the period. There were close correlations between the PAL activity and ferulate content or between the CW-PRX activity and DFA content. The expression levels of investigated genes for PAL and putative CW-PRX showed good accordance with the activities of these enzymes. These results suggest that increases in PAL and CW-PRX activities are cooperatively involved in the formation of ferulate network in cell walls of rice shoots and that investigated genes may be, at least in part, associated with the enzyme activities. The substantial increase in such network probably causes the maturation of cell walls and thus the cessation of elongation growth of coleoptiles.


Assuntos
Ácidos Cumáricos/metabolismo , Oryza/metabolismo , Peroxidase/metabolismo , Parede Celular/química , Parede Celular/enzimologia , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oryza/enzimologia , Oryza/genética , Oryza/crescimento & desenvolvimento , Peroxidase/genética , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo
16.
J Plant Physiol ; 168(16): 1997-2000, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21684033

RESUMO

Oxalate oxidase (OXO) utilizes oxalate to generate hydrogen peroxide, and thereby acts as a source of hydrogen peroxide. The present study was carried out to investigate whether apoplastic OXO modifies the metabolism of cell wall-bound ferulates in wheat seedlings. Histochemical staining of OXO showed that cell walls were strongly stained, indicating the presence of OXO activity in shoot walls. When native cell walls prepared from shoots were incubated with oxalate or hydrogen peroxide, the levels of ester-linked diferulic acid (DFA) isomers were significantly increased. On the other hand, the level of ester-linked ferulic acid (FA) was substantially decreased. The decrease in FA level was accounted neither by the increases in DFA levels nor by the release of FA from cell walls during the incubation. After the extraction of ester-linked ferulates, considerable ultraviolet absorption remained in the hemicellulosic and cellulose fractions, which was increased by the treatment with oxalate or hydrogen peroxide. Therefore, a part of FA esters may form tight linkages within cell wall architecture. These results suggest that cell wall OXO is capable of modifying the metabolism of ester-linked ferulates in cell walls of wheat shoots by promoting the peroxidase action via supply of hydrogen peroxide.


Assuntos
Ácidos Cumáricos/metabolismo , Oxirredutases/metabolismo , Triticum/metabolismo , Parede Celular/enzimologia , Parede Celular/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidase/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/enzimologia , Brotos de Planta/metabolismo , Plântula/enzimologia , Plântula/metabolismo , Triticum/enzimologia
17.
Plant Signal Behav ; 5(11): 1480-2, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21051953

RESUMO

The body shape of a plant is primarily regulated by orientation of cortical microtubules. γ-Tubulin complex and katanin are required for the nucleation and the severing of microtubules, respectively. Here we discuss the role of γ-tubulin complex and katanin during reorientation of cortical microtubules. 1-Aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, modifies growth anisotropy of azuki bean epicotyls; it inhibits elongation growth and promotes lateral growth. The ACC-induced reorientation of cortical microtubules from transverse to longitudinal directions preceded the modification of growth anisotropy. The transcript level of γ-tubulin complex (VaTUG and VaGCP3) and katanin (VaKTN1) was increased transiently by ACC treatment. During reorientation of cortical microtubules by hypergravity, which also modifies growth anisotropy of shoots, the expression levels of both γ-tubulin complex and katanin genes were increased transiently. The increase in the number of the nucleated microtubule branch as well as the microtubule-severing activity via upregulation of γ-tubulin complex genes and katanin genes may be involved in the reorientation of cortical microtubules, and contribute to the regulation of the shape of plant body.


Assuntos
Adenosina Trifosfatases/metabolismo , Etilenos/metabolismo , Fabaceae/citologia , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Adenosina Trifosfatases/genética , Aminoácidos Cíclicos/farmacologia , Anisotropia , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Katanina , Tubulina (Proteína)/genética , Regulação para Cima
18.
J Plant Physiol ; 167(14): 1165-71, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20451287

RESUMO

The effects of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, on growth, orientation of cortical microtubules, and the transcript levels of gamma-tubulin complex (VaTUG and VaGCP3) and katanin (VaKTN1) genes in azuki bean (Vigna angularis) epicotyls were examined. ACC inhibited elongation growth and stimulated lateral growth of epicotyls dose dependently. It also reduced the percentage of cells with transverse microtubules and increased the percentage of cells with longitudinal microtubules. A significant change in elongation and lateral growth was detected within 1 and 1.5 h after the start of 10(-5) M ACC treatment, respectively. On the other hand, the reorientation of cortical microtubules from transverse to longitudinal direction began within 0.5 h, and continued until 2 h after the start of ACC treatment. ACC at 10(-5) M increased the transcript level of VaTUG, VaGCP3 and VaKTN1 within 0.5 h, and the levels of VaTUG and VaGCP3 became maximum at 1h and that of VaKTN1 at 1.5 h, followed by a decrease to the control level. These results suggest that ACC transiently increases the transcript levels of gamma-tubulin complex and katanin genes, which may facilitate reorientation of cortical microtubules and modification of growth anisotropy from elongation to lateral growth in azuki bean epicotyls.


Assuntos
Adenosina Trifosfatases/genética , Aminoácidos Cíclicos/farmacologia , Fabaceae/efeitos dos fármacos , Fabaceae/metabolismo , Tubulina (Proteína)/genética , Katanina , Microscopia de Fluorescência , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Plant Signal Behav ; 5(6): 752-4, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20404495

RESUMO

Mechanical resistance to the gravitational force is a principal gravity response in plants distinct from gravitropism. In the final step of gravity resistance, plants increase the rigidity of their cell walls. Here we discuss the role of cortical microtubules, which sustain the function of the cell wall, in gravity resistance. Hypocotyls of Arabidopsis tubulin mutants were shorter and thicker than the wild-type, and showed either left-handed or right-handed helical growth at 1 g. The degree of twisting phenotype was intensified under hypergravity conditions. Hypergravity also induces reorientation of cortical microtubules from transverse to longitudinal directions in epidermal cells. In tubulin mutants, the percentage of cells with longitudinal microtubules was high even at 1 g, and it was further increased by hypergravity. The left-handed helical growth mutants had right-handed microtubule arrays, whereas the right-handed mutant had left-handed arrays. Moreover, blockers of mechanoreceptors suppressed both the twisting phenotype and reorientation of microtubules in tubulin mutants. These results support the hypothesis that cortical microtubules play an essential role in maintenance of normal growth phenotype against the gravitational force, and suggest that mechanoreceptors are involved in signal perception in gravity resistance. Space experiments will confirm whether this view is applicable to plant resistance to 1 g gravity, as to the resistance to hypergravity.

20.
J Plant Physiol ; 167(10): 800-4, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20117856

RESUMO

Epicotyl cuttings of azuki bean were incubated with [14C]-glucose (Glc) or [3H]-fucose (Fuc), and the metabolism of radiolabeled polymers in the 24% KOH-extractable cell wall fraction was investigated. Applied 14C-Glc and (3)H-Fuc were predominantly incorporated into the glucan backbone and Fuc residue of xyloglucan molecules, respectively. On gel permeation chromatography, 14C-polymers consisted of a main peak (0.7-1.0 MDa) and shoulder peak (30 kDa). The pattern was similar to that of iodine-reactive xyloglucans in the fraction. On the other hand, 3H-polymers consisted of a single peak eluted around 0.7-1.0 MDa. The elution patterns of 14C- and 3H-polymers were constant during the incubation period, although incorporated radioactivity increased with time. In the pulse-chase experiment, the high molecular mass peaks (0.7-1.0 MDa) of both 14C- and 3H-polymers showed an extensive molecular mass downshift, but not the shoulder peak of 14C-polymers. These results indicate that xyloglucans in the fraction consist of two types of molecules; fucosylated high molecular mass polymers and non-fucosylated low molecular mass polymers. Azuki bean epicotyls may synthesize both types of xyloglucans independently, but only fucosylated xyloglucans undergo an active depolymerization in the cell wall.


Assuntos
Fabaceae/metabolismo , Fucose/metabolismo , Glucanos/química , Glucanos/metabolismo , Xilanos/química , Xilanos/metabolismo , Radioisótopos de Carbono , Parede Celular/metabolismo , Glucose/metabolismo , Glicosilação , Peso Molecular , Brotos de Planta/metabolismo , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...