Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biomaterials ; 298: 122142, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148757

RESUMO

Diabetes Mellitus is a silent epidemic affecting >500 million, which claimed 6.7 million lives in 2021, a projected increase of >670% in <20 years old in the next two decades but insulin is unaffordable for the large majority of the globe. Therefore, we engineered proinsulin in plant cells to facilitate oral delivery. Stability of the proinsulin gene and expression in subsequent generations, after removal of the antibiotic-resistance gene, was confirmed using PCR, Southern and western blots. Proinsulin expression was high (up to 12 mg/g DW or 47.5% of total leaf protein), stable up to one year after storage of freeze-dried plant cells at ambient temperature and met FDA regulatory requirements of uniformity, moisture content and bioburden. GM1 receptor binding, required for uptake via gut epithelial cells was confirmed by pentameric assembly of CTB-Proinsulin. IP insulin injections (without C peptide) in STZ mice rapidly decreased blood glucose level leading to transient hypoglycemia, followed by hepatic glucose compensation. On the other hand, other than the 15-min lag period of oral proinsulin (transit time required to reach the gut), the kinetics of blood sugar regulation of oral CTB-Proinsulin in STZ mice was very similar to naturally secreted insulin in healthy mice (both contain C-peptide), without rapid decrease or hypoglycemia. Elimination of expensive fermentation, purification and cold storage/transportation should reduce cost and increase other health benefits of plant fibers. The recent approval of plant cell delivery of therapeutic proteins by FDA and approval of CTB-ACE2 for phase I/II human clinical studies augur well for advancing oral proinsulin to the clinic.


Assuntos
Hipoglicemia , Insulina , Humanos , Animais , Camundongos , Adulto Jovem , Adulto , Insulina/metabolismo , Proinsulina , Glicemia/análise , Células Vegetais/química , Células Vegetais/metabolismo , Peptídeo C
3.
Plant Biotechnol J ; 21(2): 302-316, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36208023

RESUMO

Microfibres (diameter <5 mm) and textile dyes released from textile industries are ubiquitous, cause environmental pollution, and harm aquatic flora, fauna, animals and human life. Therefore, enzymatic abatement of microfibre pollution and textile dye detoxification is essential. Microbial enzymes for such application present major challenges of scale and affordability to clean up large scale pollution. Therefore, enzymes required for the biodegradation of microfibres and indigo dye were expressed in transplastomic tobacco plants through chloroplast genetic engineering. Integration of laccase and lignin peroxidase genes into the tobacco chloroplast genomes and homoplasmy was confirmed by Southern blots. Decolorization (up to 86%) of samples containing indigo dye (100 mg/L) was obtained using cp-laccase (0.5% plant enzyme powder). Significant (8-fold) reduction in commercial microbial cellulase cocktail was achieved in pretreated cotton fibre hydrolysis by supplementing cost effective cellulases (endoglucanases, ß-glucosidases) and accessory enzymes (swollenin, xylanase, lipase) and ligninases (laccase lignin peroxidase) expressed in chloroplasts. Microfibre hydrolysis using cocktail of Cp-cellulases and Cp-accessory enzymes along with minimal dose (0.25% and 0.5%) of commercial cellulase blend (Ctec2) showed 88%-89% of sugar release from pretreated cotton and microfibres. Cp-ligninases, Cp-cellulases and Cp-accessory enzymes were stable in freeze dried leaves up to 15 and 36 months respectively at room temperature, when protected from light. Use of plant powder for decolorization or hydrolysis eliminated the need for preservatives, purification or concentration or cold chain. Evidently, abatement of microfibre pollution and textile dye detoxification using Cp-enzymes is a novel and cost-effective approach to prevent their environmental pollution.


Assuntos
Biodegradação Ambiental , Celulase , Índigo Carmim , Lacase/metabolismo , Pós , Têxteis , Nicotiana/genética
4.
Biomaterials ; 288: 121671, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35953331

RESUMO

Because oral transmission of SARS-CoV-2 is 3-5 orders of magnitude higher than nasal transmission, we investigated debulking of oral viruses using viral trap proteins (CTB-ACE2, FRIL) expressed in plant cells, delivered through the chewing gum. In omicron nasopharyngeal (NP) samples, the microbubble count (based on N-antigen) was significantly reduced by 20 µg of FRIL (p < 0.0001) and 0.925 µg of CTB-ACE2 (p = 0.0001). Among 20 delta or omicron NP samples, 17 had virus load reduced below the detection level of spike protein in the RAPID assay, after incubation with the CTB-ACE2 gum powder. A dose-dependent 50% plaque reduction with 50-100 ng FRIL or 600-800 µg FRIL gum against Influenza strains H1N1, H3N2, and Coronavirus HCoV-OC43 was observed with both purified FRIL, lablab bean powder or gum. In electron micrographs, large/densely packed clumps of overlapping influenza particles and FRIL protein were observed. Chewing simulator studies revealed that CTB-ACE2 release was time/dose-dependent and release was linear up to 20 min chewing. Phase I/II placebo-controlled, double-blinded clinical trial (IND 154897) is in progress to evaluate viral load in saliva before or after chewing CTB-ACE2/placebo gum. Collectively, this study advances the concept of chewing gum to deliver proteins to debulk oral viruses and decrease infection/transmission.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Enzima de Conversão de Angiotensina 2 , Goma de Mascar , Procedimentos Cirúrgicos de Citorredução , Humanos , Vírus da Influenza A Subtipo H3N2 , Proteínas de Plantas , Pós , SARS-CoV-2 , Proteínas Virais
5.
Mol Ther ; 30(5): 1966-1978, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34774754

RESUMO

To advance a novel concept of debulking virus in the oral cavity, the primary site of viral replication, virus-trapping proteins CTB-ACE2 were expressed in chloroplasts and clinical-grade plant material was developed to meet FDA requirements. Chewing gum (2 g) containing plant cells expressed CTB-ACE2 up to 17.2 mg ACE2/g dry weight (11.7% leaf protein), have physical characteristics and taste/flavor like conventional gums, and no protein was lost during gum compression. CTB-ACE2 gum efficiently (>95%) inhibited entry of lentivirus spike or VSV-spike pseudovirus into Vero/CHO cells when quantified by luciferase or red fluorescence. Incubation of CTB-ACE2 microparticles reduced SARS-CoV-2 virus count in COVID-19 swab/saliva samples by >95% when evaluated by microbubbles (femtomolar concentration) or qPCR, demonstrating both virus trapping and blocking of cellular entry. COVID-19 saliva samples showed low or undetectable ACE2 activity when compared with healthy individuals (2,582 versus 50,126 ΔRFU; 27 versus 225 enzyme units), confirming greater susceptibility of infected patients for viral entry. CTB-ACE2 activity was completely inhibited by pre-incubation with SARS-CoV-2 receptor-binding domain, offering an explanation for reduced saliva ACE2 activity among COVID-19 patients. Chewing gum with virus-trapping proteins offers a general affordable strategy to protect patients from most oral virus re-infections through debulking or minimizing transmission to others.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Enzima de Conversão de Angiotensina 2/genética , Animais , Goma de Mascar , Cricetinae , Cricetulus , Procedimentos Cirúrgicos de Citorredução , Humanos , Ligação Proteica , SARS-CoV-2 , Saliva/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...