Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 14(40): 13963-70, 2012 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22986640

RESUMO

The migration of lithium (Li) ions in electrode materials is an important factor affecting the rate performance of rechargeable Li ion batteries. We have examined Li migration in spinels LiMn(2)O(4), LiCo(2)O(4), and LiCo(1/16)Mn(15/16)O(4) by means of first-principles calculations based on density functional theory (DFT). The results showed that the trajectory of the Li jump was straight between the two adjacent Li ions for all of the three spinel compounds. However, there were significant differences in the energy profiles and the Li jump path for LiMn(2)O(4) and LiCo(2)O(4). For LiMn(2)O(4) the highest energy barrier was in the middle of the two tetrahedral sites, or in the octahedral vacancy (16c). For LiCo(2)O(4) the lowest energy was around the octahedral 16c site and the energy barrier was located at the bottleneck sites. The difference in the energy profile for LiCo(2)O(4) stemmed from the charge disproportion of Co(3.5+) to Co(3+)/Co(4+) caused by a Li vacancy forming and jumping, which was not observed for LiMn(2)O(4). Charge disproportion successfully accounted for the faster Li migration mechanism observed in LiCo(1/16)Mn(15/16)O(4). Our computational results demonstrate the importance of the effect of charge distribution on the ion jump.

2.
Chemphyschem ; 10(11): 1911-5, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19554596

RESUMO

The addition of plasticizers into Li(+)-conductive solid polymer electrolytes (SPEs) is a commonly known technique to enhance the ionic conductivity. Among the used plasticizers, alkoxides of group-13 elements [such as poly(ethylene glycol) (PEG)-borate ester] are promising candidates due to the Lewis acidity of the elements of this group (i.e. B, Al, and so on), which interact with the anions and may increase the degree of dissociation of the salts and the transport number of the SPEs. By means of pulsed-gradient stimulated-echo NMR (PGStE-NMR) and AC impedance measurements, we investigate the effect of Lewis acidity originated from group-13 elements on the transport number and the dissociation rate of SPEs containing various plasticizers. Our results show that the degree of salt dissociation is significantly enhanced by the addition of plasticizers including group-13 elements, whereas only a small or negligible increase of the transport number is observed for these SPEs. We infer that the plasticizers exhibiting Lewis acidity associate with the anions, and that the associated pairs can migrate in the SPEs as fast as free anions, which results in a lower transport number than expected.

3.
J Phys Chem B ; 111(6): 1424-30, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17249717

RESUMO

Changes in electronic structure upon electrochemical lithium insertion into two iron compounds, namely, rhombohedral Fe2(SO4)3 with a NASICON-type structure and monoclinic Fe2(MoO4)3, were investigated using X-ray absorption spectroscopy (XAS). Fe K-edge and L(III)- and L(II)-edge XAS revealed that the rearrangement of Fe d electrons or rehybridization of Fe d-O p bonding took place accompanied by the reduction of Fe ions upon Li insertion for both samples and that a larger change in spectra was observed in Fe2(SO4)3. In addition, the changes in the electronic structure of the polyanion units XO4(2-) (X = S or Mo) after Li insertion were also investigated by O K-edge and S K-edge or Mo L(III)-edge XAS. The results indicated that the electronic structure around oxygen markedly changed in Fe2(MoO4)3, while no significant change was observed in Fe2(SO4)3.


Assuntos
Compostos Férricos/química , Compostos de Ferro/química , Lítio/química , Molibdênio/química , Eletroquímica , Transferência de Energia , Espectrometria por Raios X
4.
J Phys Chem B ; 110(36): 17743-50, 2006 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-16956257

RESUMO

The electrochemical lithium insertion reaction of monoclinic Li(3)Fe(2)(PO(4))(3) as cathode materials of lithium-ion batteries was investigated from the viewpoint of the electronic structure around Fe and the polyanion unit (PO(4)). Fe K-edge and L(III,II)-edge XAS measurements revealed that Fe(3+) was reduced to Fe(2+) upon Li insertion. In addition, O K-edge and P K-edge XAS also showed spectral changes upon Li insertion, which corresponded to changes in the electronic structure of the PO(4) polyanion unit. The ab initio density functional calculation was performed within the GGA and LDA+U methods. The LDA+U method reproduced well the cell potential upon lithium intercalation into Li(3)Fe(2)(PO(4))(3), whereas the GGA method underestimated the intercalation. The calculated electronic structure of Li(3)Fe(2)(PO(4))(3) described strong P 3p-O 2p covalent bonding, while weak hybridization was indicated in Fe 3d-O 2p. Moreover, the difference in electronic density between Li(3)Fe(2)(PO(4))(3) and the lithiated model indicated that the polarization effect between inserted Li and oxygen induced the changes in the electronic structure around the polyanion unit.

5.
J Phys Chem B ; 110(10): 4998-5004, 2006 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-16526742

RESUMO

The relationship between the electrochemical behavior and the arrangement of lithium/vacancies has been investigated with electrochemical Li removal in Li(x)M(y)Mn(2-y)O4 (x < or = 1.0, 0.0 < or = y < or = 0.3, M = Co, Cr). It was shown that the electrochemical removal proceeds via two voltage regions: (1) approximately 3.9 V at x > or = approximately 0.5 and (2) approximately 4.2 V at x < or = approximately 0.5. To understand the stepwise behavior, entropy measurement of reaction, DeltaS(obs), was performed by using the electrochemical methods. The changes of the sign in deltaS(obs) from negative to positive at the composition x approximately 0.50 in Li(x)M(y)Mn(2-y)O4 indicated that the ordered arrangement of Li/vacancies was formed with electrochemical Li removal. Moreover, such an ordering was suppressed by the substitution of Co3+ and Cr3+ for Mn3+. To clarify the nature and origin of Li/vacancy ordering, the Monte Carlo simulation was performed in view of Coulombic interaction. The simulation reproduced the formation of a new phase arising from Li/vacancy ordering at x = 0.50 in Li(x)Mn2O4. In addition, the ordered arrangement of Li/vacancy at x = 0.5 was perturbed by the trivalent M3+ replacement in spinel structure due to the local clustering of Li+ around M3+. Consequently, the electrochemical behavior in spinel LiMn2O4 was deeply related to the Coulombic interactions, proved by the fact that experimentally observed changes in entropy agreed well with Monte Carlo simulation based on the Coulombic interaction.

6.
Phys Chem Chem Phys ; 8(7): 882-9, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16482331

RESUMO

Electronic and local structural changes in ramsdellite-type Li(2+x)Ti3O7 compound were investigated by X-ray absorption spectroscopy (XAS) measurements. Upon electrochemical Li-ion insertions, the host lattice with ramsdellite structure is retained, indicated by X-ray powder diffraction. Ti K-edge extended X-ray absorption fine structure (EXAFS) analysis shows, however, slight local structural distortions around Ti ions. The energy shifts and the changes in the peak intensity of Ti K-edge and Ti L-edge XAS reveal the reducing oxidation states of Ti ions as the amount of electrochemically-inserted Li-ion increases. Equally important, oxide ions have a significant effect on the electronic transfer process, suggested by O K-edge XAS. These results on electronic structural changes were interpreted using the Zaanen-Sawatzky-Allen scheme.

7.
J Phys Chem B ; 110(1): 174-7, 2006 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-16471517

RESUMO

MnO2 nanosheet with acetylene black composite material has been synthesized from layered K0.45MnO2 powder. The electrochemical lithiation reaction of nanosheet composite material proceeds in a different manner from that of the parent material, layered K0.45MnO2 powder. To elucidate the origin of the changes in discharge profile, the electronic and local structures for the nanosheet composites and its parent and protonated material have been investigated by Mn K-edge and O K-edge X-ray absorption spectroscopy (XAS). The results showed that local and electronic structure around Mn ions does not vary during nanosheet formation, while significant changes in electronic structure around oxide ions were observed. Accordingly, it is suggested that the difference observed in discharge profile is due to the electronic structural change induced by nanosheet formation.


Assuntos
Compostos de Manganês , Nanoestruturas/química , Óxidos , Acetileno/química , Eletroquímica , Compostos de Manganês/síntese química , Compostos de Manganês/química , Óxidos/síntese química , Óxidos/química , Análise Espectral/métodos , Raios X
8.
J Phys Chem B ; 109(9): 4135-43, 2005 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16851474

RESUMO

Investigation on variation of the electronic structure accompanying the electrochemical lithium insertion into the perovskite type oxide, (Li,La)TiO3, has been carried out by X-ray absorption spectroscopy (XAS). During the electrochemical lithium insertion, titanium ion reduced its oxidation state from Ti4+ to Ti3+, while La3+ does not contribute to the reduction reaction resulting from Ti K-edge and La L3-edge XAS, respectively. Furthermore, O K-edge XAS showed marked spectral changes with electrochemical lithium insertion, indicating the electronic structure around oxide ion affected by lithium insertion reaction. From the XAS measurement, we have concluded the variation observed in O K-edge XAS was related to the strong interaction with inserted Li ion. To confirm this, first-principles band calculations were performed for the perovskite structure before and after electrochemical lithium insertion. The calculated results showed that the electron originated from inserted Li transferred to neighboring oxide ion locally as well as to Ti ion. This may be due to local neutralization effect of Li to reduce the electrostatic interaction in the crystal.

9.
J Phys Chem B ; 109(22): 11197-203, 2005 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16852366

RESUMO

Changes in the electronic structure of olivine Li(1-x)CoPO(4), 4.8 V positive electrode material for lithium ion batteries, were investigated using the X-ray absorption spectroscopy (XAS) technique. The threshold energy in the Co K-edge increased with electrochemical Li removal, indicating the oxidation of cobalt ions due to charge compensation. Moreover, P and O K-edge XAS showed a slight shift in threshold energy with Li removal. Although it is generally believed that the electrons of PO(4) polyanion do not contribute to the oxidation process, present experimental results indicate changes in the electronic structure around PO(4) units. Such results would be interpreted by the idea of the hybridization effect between the Co 3d and O 2p orbitals and of the polarization effect introduced by Li ions.

10.
J Phys Chem B ; 109(30): 14648-53, 2005 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16852848

RESUMO

The relationship between the Li arrangement and the electrochemical behavior has been examined as a function of composition x in electrochemically lithiated A-site deficient perovskite, Li(x)()La(1/3)NbO(3). The cell potential diagram and powder X-ray diffraction (XRD) study indicated that the Li ions are inserted into the vacant Perovskite A-site with an electrochemical reaction. In addition, the derivatives of the cell potential diagram showed three cathodic peaks, indicating a stepwise Li insertion mechanism takes place. Such a stepwise behavior would be ascribed to the changes in arrangement of inserted Li ions in the Perovskite lattice, since the XRD patterns of pristine La(1/3)NbO(3) showed that the La arrangement in La(1/3)NbO(3) was ordered along the c-axis, causing two kinds of A-site vacancies. To reveal the changes in the arrangement of Li ions, the entropy measurement of the reaction was performed by both the electrochemical and the calorimetric techniques. Moreover, the formation energy of the Perovskite structure with various Li arrangements was compared by using an ab initio calculation. The results of experiment and computation suggested that the electrochemical reaction proceeded via two kinds of superstructures of Li(1/6)La(1/3)NbO(3) and Li(1/2)La(1/3)NbO(3) due to the ordered arrangement of Li ions.

11.
J Phys Chem B ; 109(3): 1130-4, 2005 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-16851071

RESUMO

Electronic structural changes in LiTi(2)O(4) spinel compounds upon electrochemical lithium insertions were investigated by X-ray absorption spectroscopy (XAS) measurements and first principles calculations based on spin-polarized density functional theory. Ti K-edge, O K-edge XAS spectra and theoretical calculations indicate that oxide ions as well as titanium ions are involved in electronic structural changes caused by electrochemical lithium ion insertions. The considerable effect of the oxide ions in the early 3d transition metal (titanium) oxide system is discussed in this article.


Assuntos
Simulação por Computador , Lítio/química , Titânio/química , Eletroquímica , Elétrons , Sensibilidade e Especificidade , Análise Espectral/métodos , Difração de Raios X , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...