Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 12: 314, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21801424

RESUMO

BACKGROUND: Current biosensors are designed to target and react to specific nucleic acid sequences or structural epitopes. These 'target-specific' platforms require creation of new physical capture reagents when new organisms are targeted. An 'open-target' approach to DNA microarray biosensing is proposed and substantiated using laboratory generated data. The microarray consisted of 12,900 25 bp oligonucleotide capture probes derived from a statistical model trained on randomly selected genomic segments of pathogenic prokaryotic organisms. Open-target detection of organisms was accomplished using a reference library of hybridization patterns for three test organisms whose DNA sequences were not included in the design of the microarray probes. RESULTS: A multivariate mathematical model based on the partial least squares regression (PLSR) was developed to detect the presence of three test organisms in mixed samples. When all 12,900 probes were used, the model correctly detected the signature of three test organisms in all mixed samples (mean(R²)) = 0.76, CI = 0.95), with a 6% false positive rate. A sampling algorithm was then developed to sparsely sample the probe space for a minimal number of probes required to capture the hybridization imprints of the test organisms. The PLSR detection model was capable of correctly identifying the presence of the three test organisms in all mixed samples using only 47 probes (mean(R²)) = 0.77, CI = 0.95) with nearly 100% specificity. CONCLUSIONS: We conceived an 'open-target' approach to biosensing, and hypothesized that a relatively small, non-specifically designed, DNA microarray is capable of identifying the presence of multiple organisms in mixed samples. Coupled with a mathematical model applied to laboratory generated data, and sparse sampling of capture probes, the prototype microarray platform was able to capture the signature of each organism in all mixed samples with high sensitivity and specificity. It was demonstrated that this new approach to biosensing closely follows the principles of sparse sensing.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Bactérias/classificação , Simulação por Computador , Análise dos Mínimos Quadrados , Oligonucleotídeos/genética , Análise de Regressão , Sensibilidade e Especificidade
2.
Hum Genomics ; 1(3): 209-17, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15588480

RESUMO

Probe and primer design for single nucleotide polymorphism (SNP) detection can be very challenging for A-T DNA-rich targets, requiring long sequences with lower specificity and stability, while G-C-rich DNA targets present limited design options to lower GC-content sequences only. We have developed the MGB Eclipse Probe System, which is composed of the following elements: MGB Eclipse probes and primers, specially developed software for the design of probes and primers, a unique set of modified bases and a Microsoft Excel macro for automated genotyping, which ably solves, in large part, this challenge. Fluorogenic MGB Eclipse probes are modified oligonucleotides containing covalently attached duplex-stabilising dihydrocyclopyrroloindole tripeptide (DPI3), the MGB ligand (MGB is a trademark of Epoch Biosciences, Bothell, WA), which has the combined properties of allowing the use of short sequences and providing great mismatch discrimination. The MGB moiety prevents probe degradation during polymerase chain reaction (PCR), allowing the researcher to use real time data; alternatively, hybridisation can be accurately measured by a post-PCR two-colour melt curve analysis. Using MGB Eclipse probes and primers containing modified bases further enhances the analysis of difficult SNP targets. G- or C-rich sequences can be refractory to analysis due to Hoogsteen base pairing. Substitution of normal G with Epoch's modified G prevents Hoogsteen base pairing, allowing both superior PCR and probe-based analysis of GC-rich targets. The use of modified A and T bases allows better stabilisation by significantly increasing the Tm of the oligonucleotides. Modified A creates A-T base pairs that have a stability slightly lower than a G-C base pair, and modified T creates T-A base pairs that have a stability about 30 per cent higher than the unmodified base pair. Together, the modified bases permit the use of short probes, providing good mismatch discrimination and primers that allow PCR of refractory targets. The combination of MGB Eclipse probes and primers enriched with the MGB ligand and modified bases has allowed the analysis of refractory SNPs, where other methods have failed.


Assuntos
Sondas de DNA , DNA/análise , Sequência Rica em GC/genética , Polimorfismo de Nucleotídeo Único/genética , Sequência de Bases , Genótipo , Humanos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...