Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 58(15): 2017-2027, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30865432

RESUMO

The cytosolic iron-sulfur cluster assembly (CIA) scaffold, comprising Nbp35 and Cfd1 in yeast, assembles iron-sulfur (FeS) clusters destined for cytosolic and nuclear enzymes. ATP hydrolysis by the CIA scaffold plays an essential but poorly understood role in cluster biogenesis. Here we find that mutation of conserved residues in the four motifs comprising the ATPase site of Nbp35 diminished the scaffold's ability to both assemble and transfer its FeS cluster in vivo. The mutants fall into four phenotypic classes that can be understood by how each set of mutations affects ATP binding and hydrolysis. In vitro studies additionally revealed that occupancy of the bridging FeS cluster binding site decreases the scaffold's affinity for the nucleotide. On the basis of our findings, we propose that nucleotide binding and hydrolysis by the CIA scaffold drive a series of protein conformational changes that regulate association with other proteins in the pathway and with its newly formed FeS cluster. Our results provide insight into how the ATPase and cluster scaffolding activities are allosterically integrated.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Proteínas de Ligação ao GTP/química , Proteínas Ferro-Enxofre/química , Nucleotídeos/química , Proteínas de Saccharomyces cerevisiae/química , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Ligação Competitiva , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Hidrólise , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Mutação , Nucleotídeos/genética , Nucleotídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
2.
Sci Rep ; 7(1): 8532, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819260

RESUMO

Comparison of kinetic and thermodynamic properties of IRP1 (iron regulatory protein1) binding to FRT (ferritin) and ACO2 (aconitase2) IRE-RNAs, with or without Mn2+, revealed differences specific to each IRE-RNA. Conserved among animal mRNAs, IRE-RNA structures are noncoding and bind Fe2+ to regulate biosynthesis rates of the encoded, iron homeostatic proteins. IRP1 protein binds IRE-RNA, inhibiting mRNA activity; Fe2+ decreases IRE-mRNA/IRP1 binding, increasing encoded protein synthesis. Here, we observed heat, 5 °C to 30 °C, increased IRP1 binding to IRE-RNA 4-fold (FRT IRE-RNA) or 3-fold (ACO2 IRE-RNA), which was enthalpy driven and entropy favorable. Mn2+ (50 µM, 25 °C) increased IRE-RNA/IRP1 binding (K d) 12-fold (FRT IRE-RNA) or 6-fold (ACO2 IRE-RNA); enthalpic contributions decreased ~61% (FRT) or ~32% (ACO2), and entropic contributions increased ~39% (FRT) or ~68% (ACO2). IRE-RNA/IRP1 binding changed activation energies: FRT IRE-RNA 47.0 ± 2.5 kJ/mol, ACO2 IRE-RNA 35.0 ± 2.0 kJ/mol. Mn2+ (50 µM) decreased the activation energy of RNA-IRP1 binding for both IRE-RNAs. The observations suggest decreased RNA hydrogen bonding and changed RNA conformation upon IRP1 binding and illustrate how small, conserved, sequence differences among IRE-mRNAs selectively influence thermodynamic and kinetic selectivity of the protein/RNA interactions.


Assuntos
Proteína 1 Reguladora do Ferro/metabolismo , RNA Mensageiro/metabolismo , Elementos de Resposta , Aconitato Hidratase/genética , Animais , Cátions Bivalentes/metabolismo , Ferritinas/genética , Ferro/metabolismo , Cinética , Manganês/metabolismo , Ligação Proteica , Coelhos , Temperatura
3.
Nucleic Acids Res ; 42(10): 6567-77, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24728987

RESUMO

Metal ion binding was previously shown to destabilize IRE-RNA/IRP1 equilibria and enhanced IRE-RNA/eIF4F equilibria. In order to understand the relative importance of kinetics and stability, we now report rapid rates of protein/RNA complex assembly and dissociation for two IRE-RNAs with IRP1, and quantitatively different metal ion response kinetics that coincide with the different iron responses in vivo. kon, for FRT IRE-RNA binding to IRP1 was eight times faster than ACO2 IRE-RNA. Mn(2+) decreased kon and increased koff for IRP1 binding to both FRT and ACO2 IRE-RNA, with a larger effect for FRT IRE-RNA. In order to further understand IRE-mRNA regulation in terms of kinetics and stability, eIF4F kinetics with FRT IRE-RNA were determined. kon for eIF4F binding to FRT IRE-RNA in the absence of metal ions was 5-times slower than the IRP1 binding to FRT IRE-RNA. Mn(2+) increased the association rate for eIF4F binding to FRT IRE-RNA, so that at 50 µM Mn(2+) eIF4F bound more than 3-times faster than IRP1. IRP1/IRE-RNA complex has a much shorter life-time than the eIF4F/IRE-RNA complex, which suggests that both rate of assembly and stability of the complexes are important, and that allows this regulatory system to respond rapidly to change in cellular iron.


Assuntos
Fator de Iniciação 4F em Eucariotos/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Ribonucleico , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Animais , Ferritinas/genética , Ferritinas/metabolismo , Ferro/metabolismo , Proteína 1 Reguladora do Ferro/química , Cinética , Manganês/química , Potássio/química , Coelhos
4.
J Biol Chem ; 288(32): 23358-67, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798678

RESUMO

P-loop NTPases of the ApbC/Nbp35 family are involved in FeS protein maturation in nearly all organisms and are proposed to function as scaffolds for initial FeS cluster assembly. In yeast and animals, Cfd1 and Nbp35 are homologous P-loop NTPases that form a heterotetrameric complex essential for FeS protein maturation through the cytosolic FeS cluster assembly (CIA) pathway. Cfd1 is conserved in animals, fungi, and several archaeal species, but in many organisms, only Nbp35 is present, raising the question of the unique roles played by Cfd1 and Nbp35. To begin to investigate this issue, we examined Cfd1 and Nbp35 function in budding yeast. About half of each protein was detected in a heterocomplex in logarithmically growing yeast. Nbp35 readily bound (55)Fe when fed to cells, whereas (55)Fe binding by free Cfd1 could not be detected. Rapid (55)Fe binding to and release from Nbp35 was impaired by Cfd1 deficiency. A Cfd1 mutation that caused a defect in heterocomplex stability supported iron binding to Nbp35 but impaired iron release. Our results suggest a model in which Cfd1-Nbp35 interaction increases the lability of assembled FeS on the Nbp35 scaffold for transfer to target apo-FeS proteins.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ligação ao GTP/genética , Proteínas Ferro-Enxofre/genética , Mutação , Ligação Proteica/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
J Mol Biol ; 425(18): 3301-10, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23806658

RESUMO

IRP1 [iron regulatory protein (IRP) 1] is a bifunctional protein with mutually exclusive end-states. In one mode of operation, IRP1 binds iron-responsive element (IRE) stem-loops in messenger RNAs encoding proteins of iron metabolism to control their rate of translation. In its other mode, IRP1 serves as cytoplasmic aconitase to correlate iron availability with the energy and oxidative stress status of the cell. IRP1/IRE binding occurs through two separate interfaces, which together contribute about two-dozen hydrogen bonds. Five amino acids make base-specific contacts and are expected to contribute significantly to binding affinity and specificity of this protein:RNA interaction. In this mutagenesis study, each of the five base-specific amino acids was changed to alter binding at each site. Analysis of IRE binding affinity and translational repression activity of the resulting IRP1 mutants showed that four of the five contact points contribute uniquely to the overall binding affinity of the IRP1:IRE interaction, while one site was found to be unimportant. The stronger-than-expected effect on binding affinity of mutations at Lys379 and Ser681, residues that make contact with the conserved nucleotides G16 and C8, respectively, identified them as particularly critical for providing specificity and stability to IRP1:IRE complex formation. We also show that even though the base-specific RNA-binding residues are not part of the aconitase active site, their substitutions can affect the aconitase activity of holo-IRP1, positively or negatively.


Assuntos
Proteína 1 Reguladora do Ferro/metabolismo , Ferro/farmacologia , Nucleotídeos/metabolismo , Elementos de Resposta/genética , Animais , Sítios de Ligação/genética , Domínio Catalítico/genética , Regulação para Baixo/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína 1 Reguladora do Ferro/química , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/fisiologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação de Ácido Nucleico , Nucleotídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos , Saccharomyces cerevisiae , Especificidade por Substrato
6.
J Biol Chem ; 287(15): 12365-78, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22362766

RESUMO

The essential P-loop NTPases Cfd1 and Nbp35 of the cytosolic iron-sulfur (Fe-S) protein assembly machinery perform a scaffold function for Fe-S cluster synthesis. Both proteins contain a nucleotide binding motif of unknown function and a C-terminal motif with four conserved cysteine residues. The latter motif defines the Mrp/Nbp35 subclass of P-loop NTPases and is suspected to be involved in transient Fe-S cluster binding. To elucidate the function of these two motifs, we first created cysteine mutant proteins of Cfd1 and Nbp35 and investigated the consequences of these mutations by genetic, cell biological, biochemical, and spectroscopic approaches. The two central cysteine residues (CPXC) of the C-terminal motif were found to be crucial for cell viability, protein function, coordination of a labile [4Fe-4S] cluster, and Cfd1-Nbp35 hetero-tetramer formation. Surprisingly, the two proximal cysteine residues were dispensable for all these functions, despite their strict evolutionary conservation. Several lines of evidence suggest that the C-terminal CPXC motifs of Cfd1-Nbp35 coordinate a bridging [4Fe-4S] cluster. Upon mutation of the nucleotide binding motifs Fe-S clusters could no longer be assembled on these proteins unless wild-type copies of Cfd1 and Nbp35 were present in trans. This result indicated that Fe-S cluster loading on these scaffold proteins is a nucleotide-dependent step. We propose that the bridging coordination of the C-terminal Fe-S cluster may be ideal for its facile assembly, labile binding, and efficient transfer to target Fe-S apoproteins, a step facilitated by the cytosolic iron-sulfur (Fe-S) protein assembly proteins Nar1 and Cia1 in vivo.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Sequência Conservada , Complexos de Coordenação , Cisteína/genética , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Guanosina Trifosfato/química , Ferro , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Mutagênese Sítio-Dirigida , Oxirredução , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Enxofre
7.
FEBS Lett ; 586(1): 32-5, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22119729

RESUMO

Iron responsive elements (IREs) are short stem-loop structures found in several mRNAs encoding proteins involved in cellular iron metabolism. Iron regulatory proteins (IRPs) control iron homeostasis through differential binding to the IREs, accommodating any sequence or structural variations that the IREs may present. Here we report the structure of IRP1 in complex with transferrin receptor 1 B (TfR B) IRE, and compare it to the complex with ferritin H (Ftn H) IRE. The two IREs are bound to IRP1 through nearly identical protein-RNA contacts, although their stem conformations are significantly different. These results support the view that binding of different IREs with IRP1 depends both on protein and RNA conformational plasticity, adapting to RNA variation while retaining conserved protein-RNA contacts.


Assuntos
Proteína 1 Reguladora do Ferro/química , Proteína 1 Reguladora do Ferro/metabolismo , Ferro , Receptores da Transferrina/química , Receptores da Transferrina/metabolismo , Elementos de Resposta , Animais , Cristalografia por Raios X , Conformação de Ácido Nucleico , Conformação Proteica , Coelhos
8.
J Biol Chem ; 285(35): 26745-26751, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20522543

RESUMO

FeS cluster biogenesis is an essential process in virtually all forms of life. Complex protein machineries that are conserved from bacteria through higher eukaryotes facilitate assembly of the FeS cofactor in proteins. In the last several years, significant strides have been made in our understanding of FeS cluster assembly and the functional overlap of this process with cellular iron homeostasis. This minireview summarizes the present understanding of the cytosolic iron-sulfur cluster assembly (CIA) system in eukaryotes, with a focus on information gained from studies in budding yeast and mammalian systems.


Assuntos
Homeostase/fisiologia , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Enxofre/metabolismo , Animais , Humanos
9.
J Biol Chem ; 284(44): 30122-8, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19720833

RESUMO

Fe(2+) is now shown to weaken binding between ferritin and mitochondrial aconitase messenger RNA noncoding regulatory structures ((iron-responsive element) (IRE)-RNAs) and the regulatory proteins (IRPs), which adds a direct role of iron to regulation that can complement the well known regulatory protein modification and degradative pathways related to iron-induced mRNA translation. We observe that the K(d) value increases 17-fold in 5'-untranslated region IRE-RNA:repressor complexes; Fe(2+), is studied in the absence of O(2). Other metal ions, Mn(2+) and Mg(2+) have similar effects to Fe(2+) but the required Mg(2+) concentration is 100 times greater than for Fe(2+) or Mn(2+). Metal ions also weaken ethidium bromide binding to IRE-RNA with no effect on IRP fluorescence, using Mn(2+) as an O(2)-resistant surrogate for Fe(2+), indicating that metal ions bound IRE-RNA but not IRP: Fe(2+) decreases IRP repressor complex stability of ferritin IRE-RNA 5-10 times compared with 2-5 times for mitochondrial aconitase IRE-RNA, over the same concentration range, suggesting that differences among IRE-RNA structures contribute to the differences in the iron responses observed in vivo. The results show the IRE-RNA:repressor complex literally responds to Fe(2+), selectively for each IRE-mRNA.


Assuntos
Ferro/metabolismo , RNA Mensageiro/genética , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/metabolismo , Elementos de Resposta/genética , Animais , Magnésio/farmacologia , Manganês/farmacologia , Coelhos , Ranidae
10.
Science ; 314(5807): 1903-8, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17185597

RESUMO

Iron regulatory protein 1 (IRP1) binds iron-responsive elements (IREs) in messenger RNAs (mRNAs), to repress translation or degradation, or binds an iron-sulfur cluster, to become a cytosolic aconitase enzyme. The 2.8 angstrom resolution crystal structure of the IRP1:ferritin H IRE complex shows an open protein conformation compared with that of cytosolic aconitase. The extended, L-shaped IRP1 molecule embraces the IRE stem-loop through interactions at two sites separated by approximately 30 angstroms, each involving about a dozen protein:RNA bonds. Extensive conformational changes related to binding the IRE or an iron-sulfur cluster explain the alternate functions of IRP1 as an mRNA regulator or enzyme.


Assuntos
Apoferritinas/genética , Proteína 1 Reguladora do Ferro/química , Proteína 1 Reguladora do Ferro/metabolismo , Sequências Reguladoras de Ácido Ribonucleico , Elementos de Resposta , Regiões não Traduzidas/química , Regiões não Traduzidas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Ligação de Hidrogênio , Ferro/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Enxofre/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-16511314

RESUMO

Iron regulatory protein 1 (IRP1) is a bifunctional protein with activity as an RNA-binding protein or as a cytoplasmic aconitase. Interconversion of IRP1 between these mutually exclusive states is central to cellular iron regulation and is accomplished through iron-responsive assembly and disassembly of a [4Fe-4S] cluster. When in its apo form, IRP1 binds to iron responsive elements (IREs) found in mRNAs encoding proteins of iron storage and transport and either prevents translation or degradation of the bound mRNA. Excess cellular iron stimulates the assembly of a [4Fe-4S] cluster in IRP1, inhibiting its IRE-binding ability and converting it to an aconitase. The three-dimensional structure of IRP1 in its different active forms will provide details of the interconversion process and clarify the selective recognition of mRNA, Fe-S sites and catalytic activity. To this end, the apo form of IRP1 bound to a ferritin IRE was crystallized. Crystals belong to the monoclinic space group P2(1), with unit-cell parameters a = 109.6, b = 80.9, c = 142.9 A, beta = 92.0 degrees. Native data sets have been collected from several crystals with resolution extending to 2.8 A and the structure has been solved by molecular replacement.


Assuntos
Ferritinas/química , Proteína 1 Reguladora do Ferro/química , Proteínas Reguladoras de Ferro/química , Animais , Apoproteínas/química , Cristalização/métodos , Cristalografia por Raios X , Ferritinas/genética , Proteínas Reguladoras de Ferro/genética , Coelhos
12.
EMBO J ; 22(18): 4826-35, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12970194

RESUMO

Iron regulatory protein 1 (IRP1) is regulated through the assembly/disassembly of a [4Fe-4S] cluster, which interconverts IRP1 with cytosolic aconitase. A genetic screen to isolate Saccharomyces cerevisiae strains bearing mutations in genes required for the conversion of IRP1 to c-aconitase led to the identification of a previously uncharacterized, essential gene, which we call CFD1 (cytosolic Fe-S cluster deficient). CFD1 encodes a highly conserved, putative P-loop ATPase. A non-lethal mutation of CFD1 (cfd1-1) reduced c-aconitase specific activity in IRP1-transformed yeast by >90%, although IRP1 in these cells could be readily converted to c-aconitase in vitro upon incubation with iron alone. IRP1-transformed cfd1-1 yeast lacked EPR-detectable Fe-S clusters in c-aconitase, pointing to a defect in Fe-S cluster assembly. The specific activity of another cytosolic Fe-S protein, Leu1p, was also inhibited by >90% in cfd1-1 yeast, whereas activity of mitochondrial Fe-S proteins was not inhibited. Consistent with a cytosolic site of activity, Cfd1p was localized in the cytoplasm. To our knowledge, Cfd1p is the first cytoplasmic Fe-S cluster assembly factor described in eukaryotes.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Saccharomyces cerevisiae/genética , Aconitato Hidratase/metabolismo , Sequência de Aminoácidos , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Teste de Complementação Genética , Humanos , Proteína 1 Reguladora do Ferro/química , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transfecção
13.
J Biol Chem ; 278(39): 37006-14, 2003 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-12857752

RESUMO

Schizosaccharomyces pombe Ddb1 is homologous to the mammalian DDB1 protein, which has been implicated in damaged-DNA recognition and global genomic repair. However, a recent study suggested that the S. pombe Ddb1 is involved in cell division and chromosomal segregation. Here, we provide evidence that the S. pombe Ddb1 is functionally linked to the replication checkpoint control gene cds1. We show that the S. pombe strain lacking ddb1 has slow growth due to delayed replication progression. Flow cytometric analysis shows an extensive heterogeneity in DNA content. Furthermore, the Deltaddb1 strain is hypersensitive to UV irradiation in S phase and is unable to tolerate a prolonged replication block imposed by hydroxyurea. Interestingly, the Deltaddb1 strain exhibits a high level of the Cds1 kinase activity during passage through S phase. Moreover, mutation of the cds1 gene relieves the defects observed in Deltaddb1 strain. The results suggest that many of the defects observed in Deltaddb1 cells are linked to an aberrant activation of Cds1, and that Ddb1 is functionally linked to Cds1.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/fisiologia , Proteínas Serina-Treonina Quinases , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Quinase do Ponto de Checagem 2 , Proteínas Quinases/fisiologia , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/efeitos da radiação
15.
J Biol Chem ; 277(9): 7246-54, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11744706

RESUMO

Interconversion of iron regulatory protein 1 (IRP1) with cytosolic aconitase (c-aconitase) occurs via assembly/disassembly of a [4Fe-4S] cluster. Recent evidence implicates oxidants in cluster disassembly. We investigated H(2)O(2)-initiated Fe-S cluster disassembly in c-aconitase expressed in Saccharomyces cerevisiae. A signal for [3Fe-4S] c-aconitase was detected by whole-cell EPR of aerobically grown, aco1 yeast expressing wild-type IRP1 or a S138A-IRP1 mutant (IRP1(S138A)), providing the first direct evidence of a 3Fe intermediate in vivo. Exposure of yeast to H(2)O(2) increased this 3Fe c-aconitase signal up to 5-fold, coincident with inhibition of c-aconitase activity. Untreated yeast expressing IRP1(S138D) or IRP1(S138E), which mimic phosphorylated IRP1, failed to give a 3Fe signal. H(2)O(2) produced a weak 3Fe signal in yeast expressing IRP1(S138D). Yeast expressing IRP1(S138D) or IRP1(S138E) were the most sensitive to inhibition of aconitase-dependent growth by H(2)O(2) and were more responsive to changes in media iron status. Ferricyanide oxidation of anaerobically reconstituted c-aconitase yielded a strong 3Fe EPR signal with wild-type and S138A c-aconitases. Only a weak 3Fe signal was obtained with S138D c-aconitase, and no signal was obtained with S138E c-aconitase. This, paired with loss of c-aconitase activity, strongly argues that the Fe-S clusters of these phosphomimetic c-aconitase mutants undergo more complete disassembly upon oxidation. Our results demonstrate that 3Fe c-aconitase is an intermediate in H(2)O(2)-initiated Fe-S cluster disassembly in vivo and suggest that cluster assembly/disassembly in IRP1 is a dynamic process in aerobically growing yeast. Further, our results support the view that phosphorylation of IRP1 can modulate its response to iron through effects on Fe-S cluster stability and turnover.


Assuntos
Aconitato Hidratase/metabolismo , Citosol/enzimologia , Proteínas Ferro-Enxofre/biossíntese , Proteínas Ferro-Enxofre/química , Ferro/metabolismo , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/química , Ácido Aspártico/química , Divisão Celular , Citoplasma/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Ácido Glutâmico/química , Peróxido de Hidrogênio/metabolismo , Proteína 1 Reguladora do Ferro , Proteínas Reguladoras de Ferro , Mutação , Oxigênio/metabolismo , Fosforilação , Espécies Reativas de Oxigênio , Saccharomyces cerevisiae/metabolismo , Serina/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...