Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 13(1): 536-543, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30566831

RESUMO

Ionic-transport processes govern performance in many classic and emerging devices, ranging from battery storage to modern mixed-conduction organic electrochemical transistors (OECT). Here, we study local ion-transport dynamics in polymer films using time-resolved electrostatic force microscopy (trEFM). We establish a correspondence between local and macroscopic measurements using local trEFM and macroscopic electrical impedance spectroscopy (EIS). We use polymer films doped with lithium bis(trifluoromethane)sulfonimide (LiTFSI) as a model system where the polymer backbone has oxanorbornenedicarboximide repeat units with an oligomeric ethylene oxide side chain of length n. Our results show that the local polymer response measured in the time domain with trEFM follows stretched-exponential relaxation kinetics, consistent with the Havriliak-Negami relaxation we measure in the frequency-domain EIS data for macroscopic samples of the same polymers. Furthermore, we show that the trEFM results capture the same trends as the EIS results-changes in ion dynamics with increasing temperature, increasing salt concentration, and increasing volume fraction of ethylene oxide side chains in the polymer matrix evolve with the same trends in both measurement techniques. We conclude from this correlation that trEFM data reflect, at the nanoscale, the same ionic processes probed in conventional EIS at the device level. Finally, as an example application for emerging materials syntheses, we use trEFM and infrared photoinduced force microscopy (PiFM) to image a diblock copolymer electrolyte for next-generation solid-state energy storage applications.

2.
ACS Nano ; 7(11): 10405-13, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24138326

RESUMO

We use frequency-modulated electrostatic force microscopy to track changes in cantilever quality factor (Q) as a function of photochemical damage in a model organic photovoltaic system poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7) and 3'H-cyclopropa[8,25][5,6]fullerene-C71-D5h(6)-3'-butanoic acid, 3'-phenyl-, methyl ester (PC71BM). We correlate local Q factor imaging with macroscopic device performance and show that, for this system, changes in cantilever Q correlate well with changes in external quantum efficiency and can thus be used to monitor local photochemical damage over the entire functional lifetime of a PTB7:PC71BM solar cell. We explore how Q imaging is affected by the choice of cantilever resonance frequency. Finally, we use Q imaging to elucidate the differences in the evolution of nanoscale structure in the photochemical damage occurring in PTB7:PC71BM solar cells processed with and without the solvent additive 1,8-diiodooctane (DIO). We show that processing with DIO not only yields a preferable morphology for uniform performance across the surface of the device but also enhances the stability of PTB7:PC71BM solar cells-an effect that can be predicted based on the local Q images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA