Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Earth Space Sci ; 8(7): e2020EA001634, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34435081

RESUMO

The ACT-America project is a NASA Earth Venture Suborbital-2 mission designed to study the transport and fluxes of greenhouse gases. The open and freely available ACT-America data sets provide airborne in situ measurements of atmospheric carbon dioxide, methane, trace gases, aerosols, clouds, and meteorological properties, airborne remote sensing measurements of aerosol backscatter, atmospheric boundary layer height and columnar content of atmospheric carbon dioxide, tower-based measurements, and modeled atmospheric mole fractions and regional carbon fluxes of greenhouse gases over the Central and Eastern United States. We conducted 121 research flights during five campaigns in four seasons during 2016-2019 over three regions of the US (Mid-Atlantic, Midwest and South) using two NASA research aircraft (B-200 and C-130). We performed three flight patterns (fair weather, frontal crossings, and OCO-2 underflights) and collected more than 1,140 h of airborne measurements via level-leg flights in the atmospheric boundary layer, lower, and upper free troposphere and vertical profiles spanning these altitudes. We also merged various airborne in situ measurements onto a common standard sampling interval, which brings coherence to the data, creates geolocated data products, and makes it much easier for the users to perform holistic analysis of the ACT-America data products. Here, we report on detailed information of data sets collected, the workflow for data sets including storage and processing of the quality controlled and quality assured harmonized observations, and their archival and formatting for users. Finally, we provide some important information on the dissemination of data products including metadata and highlights of applications of ACT-America data sets.

2.
J Geophys Res Atmos ; 124(2): 1148-1169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32832312

RESUMO

Emissions of C2-C5 alkanes from the U.S. oil and gas sector have changed rapidly over the last decade. We use a nested GEOS-Chem simulation driven by updated 2011NEI emissions with aircraft, surface and column observations to 1) examine spatial patterns in the emissions and observed atmospheric abundances of C2-C5 alkanes over the U.S., and 2) estimate the contribution of emissions from the U.S. oil and gas industry to these patterns. The oil and gas sector in the updated 2011NEI contributes over 80% of the total U.S. emissions of ethane (C2H6) and propane (C3H8), and emissions of these species are largest in the central U.S. Observed mixing ratios of C2-C5 alkanes show enhancements over the central U.S. below 2 km. A nested GEOS-Chem simulation underpredicts observed C3H8 mixing ratios in the boundary layer over several U.S. regions and the relative underprediction is not consistent, suggesting C3H8 emissions should receive more attention moving forward. Our decision to consider only C4-C5 alkane emissions as a single lumped species produces a geographic distribution similar to observations. Due to the increasing importance of oil and gas emissions in the U.S., we recommend continued support of existing long-term measurements of C2-C5 alkanes. We suggest additional monitoring of C2-C5 alkanes downwind of northeastern Colorado, Wyoming and western North Dakota to capture changes in these regions. The atmospheric chemistry modeling community should also evaluate whether chemical mechanisms that lump larger alkanes are sufficient to understand air quality issues in regions with large emissions of these species.

3.
Opt Express ; 18(26): 27670-81, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21197041

RESUMO

A difference-frequency generation based spectrometer system for simultaneous ultra-sensitive measurements of formaldehyde (CH2O) and Methane (CH4) is presented. A new multiplexing approach using collinear quasi-phase-matching in a single grating period of periodically poled lithium niobate (PPLN) is discussed and demonstrated for two pairs of pump and signal lasers to generate mid-infrared frequencies at 2831.64 cm(-1) and 2916.32 cm(-1), respectively. The corresponding absorption signals are discriminated by modulating the DFB diode lasers at modulation frequencies of 40 kHz and 50 kHz, respectively, and using a computer based modulation and de-modulation scheme. In addition, simultaneous measurements of CH2O, CH4 and H2O are demonstrated utilizing both collinear and non-collinear quasi-phase-matching.


Assuntos
Misturas Complexas/análise , Formaldeído/análise , Lasers , Metano/análise , Análise Espectral/instrumentação , Análise Espectral/métodos , Desenho de Equipamento , Análise de Falha de Equipamento
4.
Environ Sci Technol ; 43(7): 2437-42, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19452898

RESUMO

A laser photoacoustic spectroscopy (LPAS) instrument was developed and used for aircraft measurements of ethene from industrial sources near Houston, Texas. The instrument provided 20 s measurements with a detection limit of less than 0.7 ppbv. Data from this instrument and from the GC-FID analysis of air samples collected in flight agreed within 15% on average. Ethene fluxes from the Mt. Belvieu chemical complex to the northeast of Houston were quantified during 10 different flights. The average flux was 520 +/- 140 kg h(-1) in agreement with independent results from solar occultation flux (SOF) measurements, and roughly an order of magnitude higher than regulatory emission inventories indicate. This study shows that ethene emissions are routinely at levels that qualify as emission upsets, which need to be reported to regional air quality managers.


Assuntos
Poluentes Atmosféricos/análise , Etilenos/análise , Análise Espectral/métodos , Acústica
5.
Appl Phys B ; 75(2-3): 281-8, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12599397

RESUMO

The development of a compact tunable mid-IR laser system at 3.5 micrometers for quantitative airborne spectroscopic trace gas absorption measurements is reported. The mid-IR laser system is based on difference frequency generation (DFG) in periodically poled LiNbO3 and utilizes optical fiber amplified near-IR diode and fiber lasers as pump sources operating at 1083 nm and 1562 nm, respectively. This paper describes the optical sensor architecture, performance characteristics of individual pump lasers and DFG, as well as its application to wavelength modulation spectroscopy employing an astigmatic Herriott multi-pass gas absorption cell. This compact system permits detection of formaldehyde with a minimal detectable concentration (1 sigma replicate precision) of 74 parts-per-trillion by volume (pptv) for 1 min of averaging time and was achieved using calibrated gas standards, zero air background and rapid dual-beam subtraction. This corresponds to a pathlength-normalized replicate fractional absorption sensitivity of 2.5 x 10-(10 )cm-1.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/instrumentação , Lasers , Espectrofotometria Infravermelho/instrumentação , Atmosfera/química , Monitoramento Ambiental/métodos , Desenho de Equipamento , Estudos de Avaliação como Assunto , Tecnologia de Fibra Óptica , Formaldeído/análise , Nióbio , Distribuição Normal , Fibras Ópticas , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...