Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1111809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180226

RESUMO

Thermophiles from extreme thermal environments have shown tremendous potential regarding ecological and biotechnological applications. Nevertheless, thermophilic cyanobacteria remain largely untapped and are rarely characterized. Herein, a polyphasic approach was used to characterize a thermophilic strain, PKUAC-SCTB231 (hereafter B231), isolated from a hot spring (pH 6.62, 55.5°C) in Zhonggu village, China. The analyses of 16S rRNA phylogeny, secondary structures of 16S-23S ITS and morphology strongly supported strain B231 as a novel genus within Trichocoleusaceae. Phylogenomic inference and three genome-based indices further verified the genus delineation. Based on the botanical code, the isolate is herein delineated as Trichothermofontia sichuanensis gen. et sp. nov., a genus closely related to a validly described genus Trichocoleus. In addition, our results suggest that Pinocchia currently classified to belong to the family Leptolyngbyaceae may require revision and assignment to the family Trichocoleusaceae. Furthermore, the complete genome of Trichothermofontia B231 facilitated the elucidation of the genetic basis regarding genes related to its carbon-concentrating mechanism (CCM). The strain belongs to ß-cyanobacteria according to its ß-carboxysome shell protein and 1B form of Ribulose bisphosphate Carboxylase-Oxygenase (RubisCO). Compared to other thermophilic strains, strain B231contains a relatively low diversity of bicarbonate transporters (only BicA for HCO3- transport) but a higher abundance of different types of carbonic anhydrase (CA), ß-CA (ccaA) and γ-CA (ccmM). The BCT1 transporter consistently possessed by freshwater cyanobacteria was absent in strain B231. Similar situation was occasionally observed in freshwater thermal Thermoleptolyngbya and Thermosynechococcus strains. Moreover, strain B231 shows a similar composition of carboxysome shell proteins (ccmK1-4, ccmL, -M, -N, -O, and -P) to mesophilic cyanobacteria, the diversity of which was higher than many thermophilic strains lacking at least one of the four ccmK genes. The genomic distribution of CCM-related genes suggests that the expression of some components is regulated as an operon and others in an independently controlled satellite locus. The current study also offers fundamental information for future taxogenomics, ecogenomics and geogenomic studies on distribution and significance of thermophilic cyanobacteria in the global ecosystem.

2.
Cells ; 10(12)2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34943919

RESUMO

Cyanobacteria from the genus Arthrospira/Limnospira are considered haloalkalotolerant organisms with optimal growth temperatures around 35 °C. They are most abundant in soda lakes in tropical and subtropical regions. Here, we report the comprehensive genome-based characterisation and physiological investigation of the new strain O9.13F that was isolated in a temperate climate zone from the winter freezing Solenoye Lake in Western Siberia. Based on genomic analyses, the Siberian strain belongs to the Arthrospira/Limnospira genus. The described strain O9.13F showed the highest relative growth index upon cultivation at 20 °C, lower than the temperature 35 °C reported as optimal for the Arthrospira/Limnospira strains. We assessed the composition of fatty acids, proteins and photosynthetic pigments in the biomass of strain O9.13F grown at different temperatures, showing its potential suitability for cultivation in a temperate climate zone. We observed a decrease of gamma-linolenic acid favouring palmitic acid in the case of strain O9.13F compared to tropical strains. Comparative genomics showed no unique genes had been found for the Siberian strain related to its tolerance to low temperatures. In addition, this strain does not possess a different set of genes associated with the salinity stress response from those typically found in tropical strains. We confirmed the absence of plasmids and functional prophage sequences. The genome consists of a 4.94 Mbp with a GC% of 44.47% and 5355 encoded proteins. The Arthrospira/Limnospira strain O9.13F presented in this work is the first representative of a new clade III based on the 16S rRNA gene, for which a genomic sequence is available in public databases (PKGD00000000).


Assuntos
Álcalis/química , Congelamento , Genômica , Lagos/microbiologia , Estações do Ano , Spirulina/genética , Spirulina/fisiologia , Aclimatação , Carotenoides/metabolismo , Clorofila/metabolismo , Ácidos Graxos/metabolismo , Genoma , Fenótipo , Filogenia , Salinidade , Sibéria , Spirulina/isolamento & purificação , Spirulina/ultraestrutura , Estresse Fisiológico
3.
Front Microbiol ; 12: 696102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566907

RESUMO

Thermoleptolyngbya is a newly proposed genus of thermophilic cyanobacteria that are often abundant in thermal environments. However, a vast majority of Thermoleptolyngbya strains were not systematically identified, and genomic features of this genus are also sparse. Here, polyphasic approaches were employed to identify a thermophilic strain, PKUAC-SCTA183 (A183 hereafter), isolated from hot spring Erdaoqiao, Ganzi prefecture, China. Whole-genome sequencing of the strain revealed its allocation to Thermoleptolyngbya sp. and genetic adaptations to the hot spring environment. While the results of 16S rRNA were deemed inconclusive, the more comprehensive polyphasic approach encompassing phenetic, chemotaxic, and genomic approaches strongly suggest that a new taxon, Thermoleptolyngbya sichuanensis sp. nov., should be delineated around the A183 strain. The genome-scale phylogeny and average nucleotide/amino-acid identity confirmed the genetic divergence of the A183 strain from other strains of Thermoleptolyngbya along with traditional methods such as 16S-23S ITS and its secondary structure analyses. Comparative genomic and phylogenomic analyses revealed inconsistent genome structures between Thermoleptolyngbya A183 and O-77 strains. Further gene ontology analysis showed that the unique genes of the two strains were distributed in a wide range of functional categories. In addition, analysis of genes related to thermotolerance, signal transduction, and carbon/nitrogen/sulfur assimilation revealed the ability of this strain to adapt to inhospitable niches in hot springs, and these findings were preliminarily confirmed using experimental, cultivation-based approaches.

4.
Front Microbiol ; 9: 1594, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30072969

RESUMO

Although many antifungal agents are available in clinical treatment, increasing resistance of fungi, especially Candida species, to the available drugs requires the development of new safe and non-toxic compounds with novel modes of action as effective treatment against resistant microorganisms. Cobalt complexes are very interesting and attractive as potential candidates with antimicrobial activity. Their therapeutic uses as antiviral, antibacterial antifungal, antiparasitic, antitumour, transferrin transporters, and anti-inflammatory agents are being intensively investigated. In this study we examined the antifungal activity of Co(III) complexes with diamine chelate ligands against a broad spectrum of Candida species. Minimum inhibitory concentration was determined by the microbroth dilution method and with serial passaging assay; the synergistic antimicrobial activity of the tested complexes combined with two antifungal drugs (ketoconazole and amphotericin B) was made by checkerboard assay. The effects of Co(III) complexes on yeast cell morphology were studied by optical and transmission electron microscopy. The mode of action of Co(III) complexes on the yeast cell wall (sorbitol assay) and cell membrane (ergosterol assay) were investigated. The cytotoxic effects of the tested compounds on red blood cells and the human keratinocyte (HaCaT) cell line were also evaluated. The analyzed compounds revealed significant antifungal activity for selected strains of Candida species; [CoCl2(dap)2]Cl (1) and [CoCl2(en)2]Cl (2) were more effective than ketoconazole. Its probable mechanism of action did not involve the cell wall or ergosterol binding. However, the checkerboard assay showed, that the antifungal activity of ketoconazole increased in combination with the tested complexes of Co(III). Our results suggest that both diamine complexes with Co(III) analogs caused damage to mitochondrial membrane or the membrane of the endoplasmic reticulum. The effect was observed by transmission electron microscope. Co(III) complexes with diamine chelate ligands are non-toxic at concentrations active against Candida species. This study provides new data on potential antifungal drugs, especially against Candida species.

5.
Front Microbiol ; 8: 2541, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326676

RESUMO

The cyanobacterial genus Arthrospira appears very conserved and has been divided into five main genetic clusters on the basis of molecular taxonomy markers. Genetic studies of seven Arthrospira strains, including genome sequencing, have enabled a better understanding of those photosynthetic prokaryotes. Even though genetic manipulations have not yet been performed with success, many genomic and proteomic features such as stress adaptation, nitrogen fixation, or biofuel production have been characterized. Many of above-mentioned studies aimed to optimize the cultivation conditions. Factors like the light intensity and quality, the nitrogen source, or different modes of growth (auto-, hetero-, or mixotrophic) have been studied in detail. The scaling-up of the biomass production using photobioreactors, either closed or open, was also investigated to increase the production of useful compounds. The richness of nutrients contained in the genus Arthrospira can be used for promising applications in the biomedical domain. Ingredients such as the calcium spirulan, immulina, C-phycocyanin, and γ-linolenic acid (GLA) show a strong biological activity. Recently, its use in the fight against cancer cells was documented in many publications. The health-promoting action of "Spirulina" has been demonstrated in the case of cardiovascular diseases and age-related conditions. Some compounds also have potent immunomodulatory properties, promoting the growth of beneficial gut microflora, acting as antimicrobial and antiviral. Products derived from Arthrospira were shown to successfully replace biomaterial scaffolds in regenerative medicine. Supplementation with the cyanobacterium also improves the health of livestock and quality of the products of animal origin. They were also used in cosmetic preparations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...