Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 126(48): 10256-10272, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36440862

RESUMO

Polyelectrolytes continue to find wide interest and application in science and engineering, including areas such as water purification, drug delivery, and multilayer thin films. We have been interested in the dynamics of small molecules in a variety of polyelectrolyte (PE) environments; in this paper, we report simulations and analysis of the small dye molecule rhodamine B (RB) in several very simple polyelectrolyte solutions. Translational diffusion of the RB zwitterion has been measured in fully atomistic, 2 µs long molecular dynamics simulations in four different polyelectrolyte solutions. Two solutions contain the common polyanion sodium poly(styrene sulfonate) (PSS), one with a 30-mer chain and the other with 10 trimers. The other two solutions contain the common polycation poly(allyldimethylammonium) chloride (PDDA), one with two 15-mers and the other with 10 trimers. RB diffusion was also simulated in several polymer-free solutions to verify its known experimental value for the translational diffusion coefficient, DRB, of 4.7 × 10-6 cm2/s at 300 K. RB diffusion was slowed in all four simulated PE solutions, but to varying degrees. DRB values of 3.07 × 10-6 and 3.22 × 10-6 cm2/s were found in PSS 30-mer and PSS trimer solutions, respectively, whereas PDDA 15-mer and trimer solutions yielded values of 2.19 × 10-6 and 3.34 × 10-6 cm2/s. Significant associations between RB and the PEs were analyzed and interpreted via a two-state diffusion model (bound and free diffusion) that describes the data well. Crowder size effects and anomalous diffusion were also analyzed. Finally, RB translation along the polyelectrolytes during association was characterized.


Assuntos
Simulação de Dinâmica Molecular
2.
Langmuir ; 25(14): 8330-9, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19505126

RESUMO

The lateral diffusion dynamics of rhodamine B (RB) in polyelectrolyte multilayer (PEM) thin films has been studied with single-molecule confocal fluorescence microscopy. The films were made with sodium poly(sodium 4-styrenesulfonate) (PSS) and poly(diallydimethlyammonium chloride) (PDDA). Analysis of the real-time emission intensity traces reveals three diverse components of translational motion: (1) fast diffusion of RB through the confocal detection volume; (2) reversible tracer adsorption processes; and (3) nanoconfined diffusion. These processes cover a wide range of time scales. Analysis via fluorescence correlation spectroscopy (FCS) involves multicomponent fitting of the autocorrelated emission data. The model includes a free Brownian diffusion parameter, D, and two rate constants of desorption, k(-1) and k(-2). For RB in a PSS/PDDA thin film made with 0.01 M NaCl in the polyelectrolyte buildup solutions, D = 1.7 x 10(-7) cm(2)/s, k(-1) = 30 s(-1), and k(-2) = 0.1 s(-1). FCS was also performed on RB/PEM samples made with NaCl concentrations of the buildup solutions ranging from 0.01 to 0.7 M. A weak dependence of D and k(-1) on NaCl concentration was observed while k(-2) increased linearly with [NaCl].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA