Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22279589

RESUMO

BACKGROUNDThe rising breakthrough infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, especially Omicron and its sub-lineages, have raised an urgent need to develop broad-spectrum vaccines against coronavirus disease 2019 (COVID-19). We have developed a mosaic-type recombinant vaccine candidate, named NVSI-06-09, having immune potentials against a broad range of SARS-CoV-2 variants. METHODSAn ongoing randomized, double-blind, controlled phase 2 trial was conducted to evaluate the safety and immunogenicity of NVSI-06-09 as a booster dose in subjects aged 18 years and older from the United Arab Emirates (UAE), who had completed two or three doses of BBIBP-CorV vaccinations at least 6 months prior to the enrollment. The participants were randomly assigned with 1:1 to receive a booster dose of NVSI-06-09 or BBIBP-CorV. The primary outcomes were immunogenicity and safety against SARS-CoV-2 Omicron variant, and the exploratory outcome was cross-immunogenicity against other circulating strains. RESULTSA total of 516 participants received booster vaccination. Interim results showed a similar safety profile between NVSI-06-09 and BBIBP-CorV booster groups, with low incidence of adverse reactions of grade 1 or 2. For immunogenicity, by day 14 after the booster vaccination, the fold rises in neutralizing antibody geometric mean titers (GMTs) from baseline level elicited by NVSI-06-09 were remarkably higher than those by BBIBP-CorV against the prototype strain (19.67 vs 4.47-fold), Omicron BA.1.1 (42.35 vs 3.78-fold), BA.2 (25.09 vs 2.91-fold), BA.4 (22.42 vs 2.69-fold), and BA.5 variants (27.06 vs 4.73-fold). Similarly, the neutralizing GMTs boosted by NVSI-06-09 against Beta and Delta variants were also 6.60-fold and 7.17-fold higher than those boosted by BBIBP-CorV. CONCLUSIONSA booster dose of NVSI-06-09 was well-tolerated and elicited broad-spectrum neutralizing responses against SARS-CoV-2 prototype strain and immune-evasive variants, including Omicron and its sub-lineages. The immunogenicity of NVSI-06-09 as a booster vaccine was superior to that of BBIBP-CorV. (Funded by LIBP and BIBP of Sinopharm; ClinicalTrials.gov number, NCT05293548).

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22272062

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with immune escape ability raises the urgent need for developing cross-neutralizing vaccines against the virus. NVSI-06-08 is a potential broad-spectrum recombinant COVID-19 vaccine that integrates the antigens from multiple SARS-CoV-2 strains into a single immunogen. Here, we evaluated the safety and immunogenicity of NVSI-06-08 as a heterologous booster dose in adults previously vaccinated with the inactivated vaccine BBIBP-CorV in a randomized, double-blind, controlled, phase 2 trial conducted in the United Arab Emirates (NCT05069129). Three groups of healthy adults over 18 years of age (600 participants per group) who had administered two doses of BBIBP-CorV 4-6-month, 7-9-month and >9-month earlier, respectively, were vaccinated with either a homologous booster of BBIBP-CorV or a heterologous booster of NVSI-06-08. The primary outcome was immunogenicity and safety of booster vaccinations. The exploratory outcome was cross-reactive immunogenicity against multiple SARS-CoV-2 variants of concerns (VOCs). The incidence of adverse reactions was low in both booster vaccinations, and the overall safety profile of heterologous boost was quite similar to that of homologous boost. Heterologous NVSI-06-08 booster was immunogenically superior to homologous booster of BBIBP-CorV. Both Neutralizing and IgG antibodies elicited by NVSI-06-08 booster were significantly higher than by the booster of BBIBP-CorV against not only SARS-CoV-2 prototype strain but also multiple VOCs. Especially, the neutralizing activity induced by NVSI-06-08 booster against the immune-evasive Beta variant was no less than that against the prototype strain, and a considerable level of neutralizing antibodies against Omicron (GMT: 367.67; 95%CI, 295.50-457.47) was induced by heterologous booster, which was substantially higher than that boosted by BBIBP-CorV (GMT: 45.03; 95%CI, 36.37-55.74). Our findings showed that NVSI-06-08 was safe and immunogenic as a booster dose following two doses of BBIBP-CorV, which was immunogenically superior to homologous boost with another dose of BBIBP-CorV. Our study also indicated that the design of hybrid antigen may provide an effective strategy for broad-spectrum vaccine developments.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268499

RESUMO

BackgroundThe increased coronavirus disease 2019 (COVID-19) breakthrough cases pose the need of booster vaccinations. In this study, we reported the safety and immunogenicity of a heterologous boost with a recombinant COVID-19 vaccine (CHO cells), named NVSI-06-07, as a third dose in participants who have previously received two doses of the inactivated vaccine (BBIBP-CorV) at pre-specified time intervals. Using homologous boost with BBIBP-CorV as control, the safety and immunogenicity of the heterologous boost with NVSI-06-07 against various SARS-CoV-2 strains, including Omicron, were characterized. MethodsThis study is a single-center, randomised, double-blinded, controlled phase 2 trial for heterologous boost of NVSI-06-07 in BBIBP-CorV recipients from the United Arab Emirates (UAE). Healthy adults (aged [≥]18 years) were enrolled and grouped by the specified prior vaccination interval of BBIBP-CorV, i.e., 1-3 months, 4-6 months or [≥]6 months, respectively, with 600 individuals per group. For each group, participants were randomly assigned at 1:1 ratio to receive either a heterologous boost of NVSI-06-07 or a homologous booster dose of BBIBP-CorV. The primary outcome was to comparatively assess the immunogenicity between heterologous and homologous boosts at 14 and 28 days post-boosting immunization, by evaluation of the geometric mean titers (GMTs) of IgG and neutralizing antibodies as well as the corresponding seroconversion rate ([≥]4-fold rise in antibody titers). The secondary outcomes were the safety profile of the boosting strategies within 30 days post vaccination. The exploratory outcome was the immune efficacy against Omicron and other variants of concern (VOCs) of SARS-CoV-2. This trial is registered with ClinicalTrials.gov, NCT05033847. FindingsA total of 1800 individuals who have received two doses of BBIBP-CorV were enrolled, of which 899 participants received a heterologous boost of NVSI-06-07 and 901 received a homologous boost for comparison. No vaccine-related serious adverse event (SAE) and no adverse events of special interest (AESI) were reported. 184 (20{middle dot}47%) participants in the heterologous boost groups and 177 (19{middle dot}64%) in the homologous boost groups reported at least one adverse reaction within 30 days. Most of the local and systemic adverse reactions reported were grades 1 (mild) or 2 (moderate), and there was no significant difference in the overall safety between heterologous and homologous boosts. Immunogenicity assays showed that the seroconversion rates in neutralizing antibodies against prototype SARS-CoV-2 elicited by heterologous boost were 89{middle dot}96% - 97{middle dot}52% on day 28 post-boosting vaccination, which was much higher than what was induced by homologous boost (36{middle dot}80% - 81{middle dot}75%). Similarly, in heterologous NVSI-06-07 booster groups, the neutralizing geometric mean titers (GMTs) against the prototype strain increased by 21{middle dot}01 - 63{middle dot}85 folds from baseline to 28 days post-boosting vaccination, whereas only 4{middle dot}20 - 16{middle dot}78 folds of increases were observed in homologous BBIBP-CorV booster group. For Omicron variant, the neutralizing antibody GMT elicited by the homologous boost of BBIBP-CorV was 37{middle dot}91 (95%CI, 30{middle dot}35-47{middle dot}35), however, a significantly higher level of neutralizing antibodies with GMT 292{middle dot}53 (95%CI, 222{middle dot}81-384{middle dot}07) was induced by the heterologous boost of NVSI-06-07, suggesting that it may serve as an effective boosting strategy combating the pandemic of Omicron. The similar results were obtained for other VOCs, including Alpha, Beta and Delta, in which the neutralizing response elicited by the heterologous boost was also significantly greater than that of the homologous boost. In the participants primed with BBIBP-CorV over 6 months, the largest increase in the neutralizing GMTs was obtained both in the heterologous and homologous boost groups, and thus the booster vaccination with over 6 months intervals was optimal. InterpretationOur findings indicated that the heterologous boost with NVSI-06-07 was safe, well-tolerated and immunogenic in adults primed with a full regimen of BBIBP-CorV. Compared to homologous boost with a third dose of BBIBP-CorV, incremental increases in immune responses were achieved by the heterologous boost with NVSI-06-07 against SARS-CoV-2 prototype strain, Omicron variant, and other VOCs. The heterologous BBIBP-CorV/NVSI-06-07 prime-boosting vaccination may be valuable in preventing the pandemic of Omicron. The optimal booster strategy was the heterologous boost with NVSI-06-07 over 6 months after a priming with two doses of BBIBP-CorV. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSWe searched PubMed for clinical trials or prospective/cohort studies involving heterologous booster vaccination in non-immunocompromised population published up to Dec 25, 2021, using the term "(COVID) AND (vaccin*) AND (clinical trial OR cohort OR prospective) AND (heterologous) AND (booster OR prime-boost OR third dose)" with no language restrictions. Nine studies of heterologous prime-boost vaccinations with adenovirus-vector vaccines (ChAdOx1 nCov-19, Oxford-AstraZeneca, Ad26.COV2.S, Janssen) and mRNA vaccines (BNT162b2, Pfizer-BioNtech; mRNA1273, Moderna) were identified. The adenovirus-vector and mRNA heterologous prime-boost vaccination was found to be well tolerated and immunogenic. In individuals primed with adenovirus-vector vaccine, mRNA booster vaccination led to greater immune response than homologous boost. However, varied results were obtained on whether heterologous boost was immunogenically superior to the homologous mRNA prime-boost vaccination. Besides that, A preprint trial in population previously immunized with inactivated vaccines (CoronaVac, Sinovac Biotech) showed that the heterologous boost with adenovirus-vector vaccine (Convidecia, CanSino Biologicals) was safe and induced higher level of live-virus neutralizing antibodies than by the homogeneous boost. A pilot study reported that boosting with BNT162b2 in individuals primed with two doses of inactivated vaccines (BBIBP-CorV) was significantly more immunogenic than homologous vaccination with two-dose of BNT162b2. In addition, a preprint paper demonstrated that heterologous boost of ZF2001, a recombinant protein subunit vaccine, after CoronaVac or BBIBP-CorV vaccination potently improved the immunogenicity. But only a small size of samples was tested in this study and the live-virus neutralization was not detected. Till now, it is still lacking a formal clinical trial to evaluate the immunogenicity and safety of the heterologous prime-boost vaccination with an inactivated vaccine followed by a recombinant protein subunit-based vaccine. Added value of this studyTo our knowledge, this is the first reported result of a large-scale randomised, controlled clinical trial of heterologous prime-boost vaccination with an inactivated vaccine followed by a recombinant protein subunit vaccine. This trial demonstrated that the heterologous prime-booster vaccination with BBIBP-CorV/NVSI-06-07 is safe and immunogenic. Its immunoreactivity is similar to that of homologous vaccination with BBIBP-CorV. Compared to homologous boost, heterologous boost with NVSI-06-07 in BBIBP-CorV recipients elicited significantly higher immunogenicity not only against the SARS-CoV-2 prototype strain but also against Omicron and other variants of concern (VOCs). Implications of all the available evidenceBooster vaccination is considered an effective strategy to improve the protection efficacy of COVID-19 vaccines and control the epidemic waves of SARS-CoV-2. Data from our trial suggested that the booster vaccination of NVSI-06-07 in BBIBP-CorV recipients significantly improved the immune responses against various SARS-CoV-2 strains, including Omicron. Due to no Omicron-specific vaccine available currently, the BBIBP-CorV/NVSI-06-07 heterologous prime-boost might serve as an effective strategy combating Omicron variant. Besides that, BBIBP-CorV has been widely inoculated in population, and thus further boosting vaccination with NVSI-06-07 is valuable in preventing the COVID-19 pandemic. But further studies are needed to assess the long-term protection of BBIBP-CorV/NVSI-06-07 prime-booster vaccination.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256205

RESUMO

BackgroundThe anti-SARS-CoV-2 immunological assays have promising applications in the control and surveillance of the current COVID-19 pandemic. Therefore, large number of serological assays are developed in the commercial market to measure SARS-CoV-2 antibodies, which requires evaluation before their application in large scale. ObjectivesTo evaluate the performances of commercially available serological assays for detecting SARS-CoV-2 antibodies. MethodsThe study compared the performances of six different methods for detection of antibodies against SARS-CoV-2 which includes (i) Genscript SARS-CoV-2 surrogate virus neutralization test kit [Test A] (ii) Diasorin - SARS-CoV-2 S1/S2 IgG detection [Test B] (iii) Alinity SARS-CoV-2 IgG II [Test C] (iv) Diasorin - SARS-CoV-2 TrimericS IgG [Test D] (v) Roche Elecsys Anti-SARS-CoV-2 - cobas [Test E] (vi) AESKULISA (AESKU Enzyme Linked Immunosorbent Assay) [Test F] against the gold standard Plaque Reduction Neutralization Test (PRNT). ResultsTest E had the highest sensitivity and Test A had the highest specificity The ROC for tests A, C, D and E showed optimum cut-offs that differed from the manufacturers recommendation. Test D had the best performance considering all the performance indicators with the highest agreement with the PRNT results. Parallel testing of test A with test D and test B had the optimum performance. ConclusionSerological assays that are commercially available are very promising and show good agreement with the standard PRNT results. Studies on large samples for optimization of the assay cut-off values and cost-effective evaluations on parallel testing methods are needed to make recommendations on these commercial assays. ImportanceSerological assays that are commercially available are very promising and this paper adds new knowledge about the optimization of these kits for evaluating post vaccination antibodies status. It highlights the positive and negative aspects of each of these assays in terms of sensitivity, specificity, positive and negative predictive values, and the agreement of results with the standard neutralization test. When serological assays are being used to assess post-vaccine immune status, a balance of all parameters needs to be considered rather than emphasizing only on high specificity. This is particularly relevant in the current situation where vaccination is happening around the globe, high sensitivity assays will result in reporting a lower percentage of false negative reports and avoids panic about lack of vaccine response. It is important that we understand the strengths and limitations of commercially available serological assays for better application of these tests to understand immune response and the duration of protection post vaccination.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21255533

RESUMO

BackgroundIn the current COVID-19 pandemic there is mass screening of SARS-CoV-2 happening round the world due to the extensive spread of the infections. There is a high demand for rapid diagnostic tests to expedite identification of cases and to facilitate early isolation and control spread. Hence this study evaluates seven different rapid nucleic acid detection assays that are commercially available for SARS-CoV-2 virus detection. MethodsNasopharyngeal samples were collected from 4859 participants and were tested for SARS-CoV-2 virus by the gold standard RT-PCR method along with one of these seven rapid methods of detection. Evaluation of the rapid nucleic acid detection assays was done by comparing the results of these rapid methods with the gold standard RT-qPCR results for SARS-COV-2 detection. ResultsAQ-TOP had the highest sensitivity (98%) and strong kappa value of 0.943 followed by Genechecker and Abbot ID NOW. The POCKIT (ii RT-PCR) assay had the highest test accuracy of 99.29% followed by Genechecker and Cobas Liat. Atila iAMP showed the highest percentage of invalid reports (35.5%) followed by AQ-TOP with 6% and POCKIT with 3.7% of invalid reports. ConclusionGenechecker system, Abbott ID NOW and Cobas Liat, were found to have best performance and agreement when compared to the standard RT-PCR for COVID-19 detection. With further research, these rapid tests have the potential to be employed in large scale screening of COVID-19.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253567

RESUMO

BackgroundThe current pandemic of SARS- COV- 2 virus, widely known as COVID-19 has affected millions of people around the world. The World Health Organization (WHO) has recommended vigorous testing to differentiate SARS-CoV-2 from other respiratory infections to aid in guiding appropriate care and management. Situations like this have demanded robust testing strategies and pooled testing of samples for SARS- COV- 2 virus has provided the solution to mass screening of people. The pooled testing strategy can be very effective in testing with limited resources, yet it comes with its own limitations. These limitations need critical consideration when it comes to testing of highly infectious disease like COVID -19. MethodsThe study evaluated the pooled testing of nasopharyngeal swabs for SARS- COV- 2 by comparing sensitivity of individual sample testing with 4 and 8 pool sample testing. Median cycle threshold (Ct) values were compared. The precision of pooled testing was assessed by doing an inter and intra assay of pooled samples. Coefficient of variance was calculated for inter and intra assay variability. ResultsThe sensitivity becomes considerably low when the samples are pooled, there is a higher percentage of false negatives with higher pool size and when the patient viral load is low or weak positive samples. High variability was seen in the intra and inter assay, especially in weak positive samples and larger pool size. ConclusionAs COVID - 19 numbers are still high and testing capacity needs to be high, we have to meticulously evaluate the testing strategy for each country depending on its testing capacity, infrastructure, economic strength, and need to make a serious call on cost effective strategy of resource saving and risk/ cost of missing positive patients.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253570

RESUMO

In this current COVID - 19 pandemic, there is a dire need for cost effective and less time-consuming alternatives for SARS-COV-2 testing. The RNA extraction free method for detecting SARS-COV-2 in saliva is a promising option, this study found that it has high sensitivity (85.34%), specificity (95.04%) and was comparable to the gold standard nasopharyngeal swab. The method showed good percentage of agreement (kappa coefficient) 0.797 between salivary and NPS samples. However, there are variations in the sensitivity and specificity based on the RT-PCR kit used. The Thermo Fischer-Applied biosystems showed high sensitivity, PPV and NPV but also showed higher percentage of invalid reports. Whereas the BGI kit showed high specificity, better agreement (kappa coefficient) between the results of saliva and NPS samples and higher correlation between the Ct values of saliva and NPS samples. Thus, the RNA extraction free method for salivary sample serves as an effective alternative for SARS-CoV 2-testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...