Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39005461

RESUMO

The segmentation clock, a genetic oscillator in the presomitic mesoderm (PSM), is known to be influenced by biochemical signals, yet its potential regulation by mechanical cues remains unclear. The complex PSM microenvironment has made it challenging to isolate the effects of mechanical perturbations on clock behavior. Here we investigated how mechanical stimuli affect clock oscillations by culturing zebrafish PSM cells on PDMS micropost arrays with tunable rigidities (0.6-1200 kPa). We observed an inverse sigmoidal relationship between surface rigidity and both the percentage of oscillating cells and the number of oscillation cycles, with a switching threshold between 3-6 kPa. The periods of oscillating cells showed a consistently broad distribution across rigidity changes. Moreover, these cells exhibited distinct biophysical properties, such as reduced motility, contractility, and sustained circularity. These findings highlight the crucial role of cell-substrate interactions in regulating segmentation clock behavior, providing insights into the mechanobiology of somitogenesis. Highlights: The oscillatory behaviors of single PSM cells respond to substrate rigidity in a switch-like manner, with a critical threshold between 2.9 kPa and 6 kPa.As rigidity increases, both the oscillation percentage and the number of cycles decrease, while the period does not show a clear dependency on rigidity.Oscillating cells exhibit distinct biophysical properties compared to non-oscillating cells, including higher and more sustained circularity, lower motility, and reduced contractility.Cell aggregates exhibit similar trends in response to rigidity, except for significantly increased oscillation percentages across different rigidity conditions, suggesting a potential interplay between cell-cell communications and rigidity in influencing cell aggregate behavior.

2.
Front Genome Ed ; 6: 1401163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903529

RESUMO

Recent advancements in genome editing techniques, notably CRISPR-Cas9 and TALENs, have marked a transformative era in biomedical research, significantly enhancing our understanding of disease mechanisms and helping develop novel therapies. These technologies have been instrumental in creating precise animal models for use in stem cell research and regenerative medicine. For instance, we have developed a transgenic pig model to enable the investigation of LGR5-expressing cells. The model was designed to induce the expression of H2B-GFP under the regulatory control of the LGR5 promoter via CRISPR/Cas9-mediated gene knock-in. Notably, advancements in stem cell research have identified distinct subpopulations of LGR5-expressing cells within adult human, mouse, and pig tissues. LGR5, a leucine-rich repeat-containing G protein-coupled receptor, enhances WNT signaling and these LGR5+ subpopulations demonstrate varied roles and anatomical distributions, underscoring the necessity for suitable translational models. This transgenic pig model facilitates the tracking of LGR5-expressing cells and has provided valuable insights into the roles of these cells across different tissues and species. For instance, in pulmonary tissue, Lgr5+ cells in mice are predominantly located in alveolar compartments, driving alveolar differentiation of epithelial progenitors via Wnt pathway activation. In contrast, in pigs and humans, these cells are situated in a unique sub-basal position adjacent to the airway epithelium. In fetal stages a pattern of LGR5 expression during lung bud tip formation is evident in humans and pigs but is lacking in mice. Species differences with respect to LGR5 expression have also been observed in the skin, intestines, and cochlea further reinforcing the need for careful selection of appropriate translational animal models. This paper discusses the potential utility of the LGR5+ pig model in exploring the role of LGR5+ cells in tissue development and regeneration with the goal of translating these findings into human and animal clinical applications.

3.
Sci Rep ; 12(1): 9104, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650234

RESUMO

Hair follicle stem cells are key for driving growth and homeostasis of the hair follicle niche, have remarkable regenerative capacity throughout hair cycling, and display fate plasticity during cutaneous wound healing. Due to the need for a transgenic reporter, essentially all observations related to LGR5-expressing hair follicle stem cells have been generated using transgenic mice, which have significant differences in anatomy and physiology from the human. Using a transgenic pig model, a widely accepted model for human skin and human skin repair, we demonstrate that LGR5 is a marker of hair follicle stem cells across species in homeostasis and development. We also report the strong similarities and important differences in expression patterns, gene expression profiles, and developmental processes between species. This information is important for understanding the fundamental differences and similarities across species, and ultimately improving human hair follicle regeneration, cutaneous wound healing, and skin cancer treatment.


Assuntos
Folículo Piloso , Células-Tronco , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Folículo Piloso/metabolismo , Humanos , Morfogênese , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Pele , Células-Tronco/metabolismo , Suínos
4.
Can J Vet Res ; 70(2): 121-7, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16639944

RESUMO

Calves persistently infected (PI) with Bovine viral diarrhea virus (BVDV) represent an important source of infection for susceptible cattle. We evaluated vaccine efficacy using calves PI with noncytopathic BVDV2a for the challenge and compared tests to detect BVDV in acutely or transiently infected calves versus PI calves. Vaccination with 2 doses of modified live virus vaccine containing BVDV1a and BVDV2a protected the calves exposed to the PI calves: neither viremia nor nasal shedding occurred. An immunohistochemistry test on formalin-fixed ear notches and an antigen-capture enzyme-linked immunosorbent assay on fresh notches in phosphate-buffered saline did not detect BVDV antigen in any of the acutely or transiently infected calves, whereas both tests had positive results in all the PI calves.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Vírus da Diarreia Viral Bovina/imunologia , Vacinas Virais , Animais , Animais Recém-Nascidos , Formação de Anticorpos/fisiologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/sangue , Bovinos , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Vírus da Diarreia Viral Bovina Tipo 2/imunologia , Vírus da Diarreia Viral Bovina/classificação , Vírus da Diarreia Viral Bovina/isolamento & purificação , Suscetibilidade a Doenças/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Imuno-Histoquímica/veterinária , Nariz/virologia , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/farmacologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/farmacologia , Vacinas Virais/imunologia , Vacinas Virais/farmacologia , Viremia/veterinária , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...