Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(3)2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979339

RESUMO

LC8, a ubiquitous and highly conserved hub protein, binds over 100 proteins involved in numerous cellular functions, including cell death, signaling, tumor suppression, and viral infection. LC8 binds intrinsically disordered proteins (IDPs), and although several of these contain multiple LC8 binding motifs, the effects of multivalency on complex formation are unclear. Drosophila ASCIZ has seven motifs that vary in sequence and inter-motif linker lengths, especially within subdomain QT2-4 containing the second, third, and fourth LC8 motifs. Using isothermal-titration calorimetry, analytical-ultracentrifugation, and native mass-spectrometry of QT2-4 variants, with methodically deactivated motifs, we show that inter-motif spacing and specific motif sequences combine to control binding affinity and compositional heterogeneity of multivalent duplexes. A short linker separating strong and weak motifs results in stable duplexes but forms off-register structures at high LC8 concentrations. Contrastingly, long linkers engender lower cooperativity and heterogeneous complexation at low LC8 concentrations. Accordingly, two-mers, rather than the expected three-mers, dominate negative-stain electron-microscopy images of QT2-4. Comparing variants containing weak-strong and strong-strong motif combinations demonstrates sequence also regulates IDP/LC8 assembly. The observed trends persist for trivalent ASCIZ subdomains: QT2-4, with long and short linkers, forms heterogeneous complexes, whereas QT4-6, with similar mid-length linkers, forms homogeneous complexes. Implications of linker length variations for function are discussed.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Animais , Drosophila melanogaster , Ligação Proteica , Transdução de Sinais , Fatores de Transcrição/metabolismo
2.
Biomacromolecules ; 22(5): 2137-2147, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33881314

RESUMO

There is a noted lack of understood, controllable interactions for directing the organization of collagen triple helices. While the field has had success using charge-pair interactions and cation-π interactions in helix design, these alone are not adequate for achieving the degree of specificity desirable for these supramolecular structures. Furthermore, because of the reliance on electrostatic interactions, designed heterotrimeric systems have been heavily charged, a property undesirable in some applications. Amide-π interactions are a comparatively understudied class of charge-free interactions, which could potentially be harnessed for triple-helix design. Herein, we propose, validate, and utilize pairwise amino acid amide-π interactions in collagen triple-helix design. Glutamine-phenylalanine pairs, when arranged in an axial geometry, are found to exhibit a moderately stabilizing effect, while in the lateral geometry, this pair is destabilizing. Together this allows glutamine-phenylalanine pairs to effectively set the register of triple helices. In contrast, interactions between asparagine and phenylalanine appear to have little effect on triple-helical stability. After deconvoluting the contributions of these amino acids to triple-helix stability, we demonstrate these new glutamine-phenylalanine interactions in the successful design of a heterotrimeric triple helix. The results of all of these analyses are used to update our collagen triple-helix thermal stability prediction algorithm, Scoring function for Collagen Emulating Peptides' Temperature of Transition (SCEPTTr).


Assuntos
Amidas , Colágeno , Sequência de Aminoácidos , Modelos Moleculares , Estrutura Secundária de Proteína
3.
Nat Chem ; 13(3): 260-269, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589786

RESUMO

Robust methods for predicting thermal stabilities of collagen triple helices are critical for understanding natural structure and stability in the collagen family of proteins and also for designing synthetic peptides mimicking these essential proteins. In this work, we determine the relative stability imparted on the collagen triple helix by single amino acids and interactions between amino acid pairs. Using this analysis, we create a comprehensive algorithm, SCEPTTr, for predicting melting temperatures of synthetic triple helices. Critically, our algorithm is compatible with every natural amino acid, can evaluate both homotrimers and heterotrimers, and accounts for all possible helix compositions and registers, including non-canonically staggered helices. We test and optimize our algorithm against 431 published collagen triple helices to demonstrate the quality of our predictive system. Finally, we use this algorithm to successfully guide the design of an ABC heterotrimer possessing high assembly specificity.


Assuntos
Algoritmos , Colágeno/química , Sequência de Aminoácidos , Colágeno/metabolismo , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Estabilidade Proteica , Temperatura de Transição
4.
Biomacromolecules ; 21(9): 3772-3781, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32820897

RESUMO

Collagen mimetic peptides (CMPs) self-assemble into a triple helix reproducing the most fundamental aspect of the collagen structural hierarchy. They are therefore important for both further understanding this complex family of proteins and use in a wide range of biomaterials and biomedical applications. CMP self-assembly is complicated by a number of factors which limit the use of CMPs including their slow rate of folding, relatively poor monomer-trimer equilibrium, and the large number of competing species possible in heterotrimeric helices. All of these problems can be solved through the formation of isopeptide bonds between lysine and either aspartate or glutamate. These amino acids serve two purposes: they first direct self-assemble, allowing for composition and register control within the triple helix, and subsequently can be covalently linked, fixing the composition and register of the assembled structure without perturbing the triple helical conformation. This self-assembly and covalent capture are demonstrated here with four different triple helices. The formation of an isopeptide bond between lysine and glutamate (K-E) is shown to be a faster and higher yielding reaction than lysine with aspartate (K-D). Additionally, K-E amide bonds increase the thermal stability, improve the refolding capabilities, and enhance the triple helical structure as compared to K-E supramolecular interactions, observed by circular dichroism. In contrast, covalent capture of triple helices with K-D amide bonds occurs slower, and the captured triple helices do not have enhanced helical structure. The crystal structure of a triple helix captured through the formation of three K-E isopeptide bonds unequivocally demonstrates the connectivity of the amide bonds formed while also confirming the preservation of the canonical triple helix. The rate of reaction and yield for covalently captured K-E triple helices along with the excellent preservation of triple helical structure demonstrate that this approach can be used to effectively capture and stabilize this important biological motif for biological and biomedical applications.


Assuntos
Ácido Aspártico , Lisina , Colágeno , Glutamatos , Estrutura Secundária de Proteína
5.
Nat Chem Biol ; 16(4): 423-429, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31907373

RESUMO

The most abundant member of the collagen protein family, collagen I (also known as type I collagen; COL1), is composed of one unique (chain B) and two similar (chain A) polypeptides that self-assemble with one amino acid offset into a heterotrimeric triple helix. Given the offset, chain B can occupy either the leading (BAA), middle (ABA) or trailing (AAB) position of the triple helix, yielding three isomeric biomacromolecules with different protein recognition properties. Despite five decades of intensive research, there is no consensus on the position of chain B in COL1. Here, three triple-helical heterotrimers that each contain a putative von Willebrand factor (VWF) and discoidin domain receptor (DDR) recognition sequence from COL1 were designed with chain B permutated in all three positions. AAB demonstrated a strong preference for both VWF and DDR, and also induced higher levels of cellular DDR phosphorylation. Thus, we resolve this long-standing mystery and show that COL1 adopts an AAB register.


Assuntos
Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Colágeno/química , Sequência de Aminoácidos , Aminoácidos , Colágeno/metabolismo , Biologia Computacional/métodos , Humanos , Modelos Moleculares , Peptídeos/química , Conformação Proteica
6.
Org Lett ; 21(14): 5480-5484, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31246483

RESUMO

Stabilizing the three-dimensional structure of supramolecular materials can be accomplished through covalent capture of the assembled system. The lysine-aspartate charge pairs designed to direct the self-assembly of a collagen triple helix were subsequently used to covalently capture the helix through proximity-directed amide bond formation using EDC/HOBT activation. The triple helix thus stabilized maintains its folded structure and can now be used for applications previously inaccessible due to problematic folding equilibria.


Assuntos
Colágeno/química , Multimerização Proteica , Sequência de Aminoácidos , Modelos Moleculares , Conformação Proteica em alfa-Hélice
7.
ACS Biomater Sci Eng ; 4(4): 1386-1396, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29687080

RESUMO

In vivo, multidomain peptide (MDP) hydrogels undergo rapid cell infiltration and elicit a mild inflammatory response which promotes angiogenesis. Over time, the nanofibers are degraded and a natural collagen-based extracellular matrix is produced remodeling the artificial material into natural tissue. These properties make MDPs particularly well suited for applications in regeneration. In this work, we test the regenerative potential of MDP hydrogels in a diabetic wound healing model. When applied to full-thickness dermal wounds in genetically diabetic mice, the MDP hydrogel resulted in significantly accelerated wound healing compared to a clinically used hydrogel, as well as a control buffer. Treatment with the MDP hydrogel resulted in wound closure in 14 days, formation of thick granulation tissue including dense vascularization, innervation, and hair follicle regeneration. This suggests the MDP hydrogel could be an attractive choice for treatment of wounds in diabetic patients.

8.
Biomacromolecules ; 18(2): 617-624, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28098982

RESUMO

Osteogenesis imperfecta typically results from missense mutations in the collagen genome where the required glycine residues are replaced with another amino acid. Many models have attempted to replicate the structure of mutated collagen on the triple helix level. However, composition and register control of the triple helix is complicated and requires extreme precision, especially when these destabilizing mutations are present. Here we present mutations to a composition- and register-controlled AAB helix where one of the requisite glycines in the A chain of the triple helix is changed to serine or alanine. We see a loss of compositional control when the A chain is mutated, resulting in an A'BB composition that minimizes the number of mutations included in the triple helix. However, when both A and B chains are mutated and no nonmutated peptide chains are available, the designed A'A'B' composition is reestablished. Our work shows the ability of the mutations to influence and alter the composition and register of the collagen triple helix.


Assuntos
Colágeno Tipo I/química , Glicina/química , Fragmentos de Peptídeos/química , Conformação Proteica , Sequência de Aminoácidos , Substituição de Aminoácidos , Colágeno Tipo I/genética , Glicina/genética , Humanos , Simulação de Dinâmica Molecular , Mutação/genética , Fragmentos de Peptídeos/genética , Dobramento de Proteína , Homologia de Sequência
9.
Am J Obstet Gynecol ; 201(5): e5-6, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19766983

RESUMO

Total uterine prolapse, or procidentia, rarely causes obstructive uropathy. Procidentia-induced perinephric abscess has not been reported to date. We present a case of perinephric and subcutaneous abscesses secondary to procidentia-induced hydronephrosis and forniceal rupture of Staphylococcus aureus-infected urine.


Assuntos
Abscesso/etiologia , Hidronefrose/etiologia , Nefropatias/etiologia , Infecções Estafilocócicas/etiologia , Tela Subcutânea , Prolapso Uterino/complicações , Idoso , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...