Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(8): 9690-9701, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38357740

RESUMO

The development of in vitro models recapitulating nanoparticle transport under physiological flow conditions is of great importance for predicting the efficacy of nanoparticle drug carriers. Liposomes are extensively used for drug delivery owing to their biocompatibility and biodegradability and the ability to carry both hydrophilic and hydrophobic compounds. Here, we used a library of liposomes with various dimensions and a microfluidic platform comprising a large array of uniformly sized breast cancer spheroids to explore size-dependent liposome internalization and retention in the spheroids under close-to-physiological interstitial conditions. Such a platform showed promising applications in the preclinical screening of small molecule drugs; however, the capability to deliver nanoparticles in the spheroid interior under close-to-physiological flow conditions was not explored. For the liposomes with diameters in the range of 45-200 nm, we show experimentally and by simulations that in comparison with liposome delivery solely by diffusion, flow significantly enhances liposome internalization in the microgels and mitigates the size-dependent spheroid penetration by the liposomes. The utility of the microfluidic platform was validated by evaluating the efficacy of clinically approved doxorubicin-loaded liposomes (Doxil), which exhibited superior retention in the spheroids under flow conditions, in comparison with free doxorubicin. This MF platform can serve as an in vitro model for screening the efficacy of drugs encapsulated in liposomes and find applications for screening other types of nanoparticle carriers for vaccine delivery, diagnostics, and skincare.


Assuntos
Doxorrubicina/análogos & derivados , Lipossomos , Neoplasias , Humanos , Lipossomos/química , Portadores de Fármacos/química , Microfluídica , Esferoides Celulares , Doxorrubicina/farmacologia , Polietilenoglicóis
2.
Langmuir ; 39(50): 18171-18174, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38111359
3.
Langmuir ; 39(51): 18673-18677, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38146262
4.
Sci Adv ; 9(36): eadh2140, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37683007

RESUMO

Blue perovskite light-emitting diodes (LEDs) have shown external quantum efficiencies (EQEs) of more than 10%; however, devices that emit in the true blue-those that accord with the emission wavelength required for Rec. 2100 primary blue-have so far been limited to EQEs of ~6%. We focused here on true blue emitting CsPbBr3 colloidal nanocrystals (c-NCs), finding in early studies that they suffer from a high charge injection barrier, a problem exacerbated in films containing multiple layers of nanocrystals. We introduce a self-assembled monolayer (SAM) active layer that improves charge injection. We identified a bifunctional capping ligand that simultaneously enables the self-assembly of CsPbBr3 c-NCs while passivating surface traps. We report, as a result, SAM-based LEDs exhibit a champion EQE of ~12% [CIE of (0.132, 0.069) at 4.0 V with a luminance of 11 cd/m2], and 10-fold-enhanced operating stability relative to the best previously reported Rec. 2100-blue perovskite LEDs.

6.
ACS Nano ; 17(15): 15012-15024, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37459253

RESUMO

Colloidal clusters and gels are ubiquitous in science and technology. Particle softness has a strong effect on interparticle interactions; however, our understanding of the role of this factor in the formation of colloidal clusters and gels is only beginning to evolve. Here, we report the results of experimental and simulation studies of the impact of particle softness on the assembly of clusters and networks from mixtures of oppositely charged polymer nanoparticles (NPs). Experiments were performed below or above the polymer glass transition temperature, at which the interaction potential and adhesive forces between the NPs were significantly varied. Hard NPs assembled in fractal clusters that subsequently organized in a kinetically arrested colloidal gel, while soft NPs formed dense precipitating aggregates, due to the NP deformation and the decreased interparticle distance. Importantly, interactions of hard and soft NPs led to the formation of discrete precipitating NP aggregates at a relatively low volume fraction of soft NPs. A phenomenological model was developed for interactions of oppositely charged NPs with varying softnesses. The experimental results were in agreement with molecular dynamics simulations based on the model. This work provides insight on interparticle interactions before, during, and after the formation of hard-hard, hard-soft, and soft-soft contacts and has impact for numerous applications of reversible colloidal gels, including their use as inks for additive manufacturing.

7.
ACS Appl Mater Interfaces ; 15(3): 3791-3803, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36632842

RESUMO

Under healthy conditions, pro- and anti-phagocytic signals are balanced. Cluster of Differentiation 47 (CD47) is believed to act as an anti-phagocytic marker that is highly expressed on multiple types of human cancer cells including acute myeloid leukemia (AML) and lung and liver carcinomas, allowing them to escape phagocytosis by macrophages. Downregulating CD47 on cancer cells discloses calreticulin (CRT) to macrophages and recovers their phagocytic activity. Herein, we postulate that using a modified graphene oxide (GO) carrier to deliver small interfering RNA (siRNA) CD47 (CD47_siRNA) in AML, A549 lung, and HepG2 liver cancer cells in co-culture in vitro will silence CD47 and flag cancer cells for CRT-mediated phagocytosis. Results showed a high knockdown efficiency of CD47 and a significant increase in CRT levels simultaneously by using GO formulation as carriers in all used cancer cell lines. The presence of CRT on cancer cells was significantly higher than levels before knockdown of CD47 and was required to achieve phagocytosis in co-culture with human macrophages. Lipid nanoparticles (LNPs) and modified boron nitride nanotubes (BNPs) were used to carry CD47_siRNA, and the knockdown efficiency values of CD47 were compared in three cancer cells in co-culture, with an achieved knockdown efficiency of >95% using LNPs as carriers. Interestingly, the high efficiency of CD47 knockdown was obtained by using the LNPs and BNP carriers; however, an increase in CRT levels on cancer cells was not required for phagocytosis to happen in co-culture with human macrophages, indicating other pathways' involvement in the phagocytosis process. These findings highlight the roles of 2D (graphene oxide), 1D (boron nitride nanotube), and "0D" (lipid nanoparticle) carriers for the delivery of siRNA to eliminate cancer cells in co-culture, likely through different phagocytosis pathways in multiple types of human cancer cells. Moreover, these results provide an explanation of immune therapies that target CD47 and the potential use of these carriers in screening drugs for such therapies in vitro.


Assuntos
Antígeno CD47 , Leucemia Mieloide Aguda , Humanos , Antígeno CD47/metabolismo , Técnicas de Cocultura , Calreticulina/genética , Calreticulina/metabolismo , Fagocitose , RNA Interferente Pequeno
8.
Front Oncol ; 12: 981009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003785

RESUMO

Integrin α11ß1 is a collagen-binding integrin that is needed to induce and maintain the myofibroblast phenotype in fibrotic tissues and during wound healing. The expression of the α11 is upregulated in cancer-associated fibroblasts (CAFs) in various human neoplasms. We investigated α11 expression in human cutaneous squamous cell carcinoma (cSCC) and in benign and premalignant human skin lesions and monitored its effects on cSCC development by subjecting α11-knockout (Itga11-/- ) mice to the DMBA/TPA skin carcinogenesis protocol. α11-deficient mice showed significantly decreased tumor cell proliferation, leading to delayed tumor development and reduced tumor burden. Integrin α11 expression was significantly upregulated in the desmoplastic tumor stroma of human and mouse cSCCs, and the highest α11 expression was detected in high-grade tumors. Our results point to a reduced ability of α11-deficient stromal cells to differentiate into matrix-producing and tumor-promoting CAFs and suggest that this is one causative mechanism underlying the observed decreased tumor growth. An unexpected finding in our study was that, despite reduced CAF activation, the α11-deficient skin tumors were characterized by the presence of thick and regularly aligned collagen bundles. This finding was attributed to a higher expression of TGFß1 and collagen crosslinking lysyl oxidases in the Itga11-/- tumor stroma. In summary, our data suggest that α11ß1 operates in a complex interactive tumor environment to regulate ECM synthesis and collagen organization and thus foster cSCC growth. Further studies with advanced experimental models are still needed to define the exact roles and molecular mechanisms of stromal α11ß1 in skin tumorigenesis.

9.
Nanomaterials (Basel) ; 12(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35808034

RESUMO

We hereby propose the use of stable, biocompatible, and uniformly sized polymeric micelles as high-radiotracer-payload carriers at region-of-interest with negligible background activity due to no or low offsite radiolysis. We modified glycol chitosan (GC) polymer with varying levels of palmitoylation (P) and quaternization (Q). Quaternary ammonium palmitoyl glycol chitosan (GCPQ) with a Q:P ratio of 9:35 (Q9P35GC) offers >99% biocompatibility at 10 mg mL−1. Q9P35GC micelles exhibit >99% 99mTechnetium (99mTc) radiolabeling via the stannous chloride reduction method without heat. The 99mTc-Q9P35GC micelles (65 ± 3 nm) exhibit >98% 6 h serum stability at 37 °C and 7 day of radiochemical stability at 25 °C. HepG2 cells show a higher uptake of FITC-Q9P35GC than Q13P15GC and Q20P15GC. The in vivo 24 h organ cumulated activity (MBq h) order follows: liver (234.4) > kidneys (60.95) > GIT (0.73) > spleen (88.84). The liver to organ ratio remains higher than 2.4, rendering a better contrast in the liver. The radiotracer uptake decreases significantly in fibrotic vs. normal liver, whereas a blocking study with excess Q9P35GC significantly decreases the radiotracer uptake in a healthy vs. fibrotic liver. FITC-Q9P35GC shows in vivo hepato-specific uptake. Radiotracer liver uptake profile follows reversible binding kinetics with data fitting to two-tissue compartmental (2T), and graphical Ichise multilinear analysis (MA2) with lower AIC and higher R2 values, respectively. The study concludes that 99mTc-Q9P35GC can be a robust radiotracer for noninvasive hepatocyte function assessment and diagnosis of liver fibrosis. Furthermore, its multifunctional properties enable it to be a promising platform for nanotheranostic applications.

10.
Langmuir ; 38(17): 5031-5032, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35502539
11.
Biomacromolecules ; 23(5): 1928-1937, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35119839

RESUMO

Plant-derived phytoglycogen nanoparticles (PhG NPs) have the advantages of size uniformity, dispersibility in water, excellent lubrication properties, and lack of cytotoxicity; however, their chemical functionalization may lead to loss of NP structural integrity. Here, we report a straightforward approach to the generation of PhG NP conjugates with biologically active molecules. Hydrogen bonding of bovine serum albumin with electroneutral PhG NPs endows them with additional ligand binding affinity and enables the electrostatically governed attachment of methotrexate (MTX), a therapeutic agent commonly used in the treatment of cancer and arthritis diseases, to the protein-capped NPs. We showed stimuli-responsive release of MTX from the PhG-based nanoconjugates under physiological cues such as temperature and ionic strength. The results of this study stimulate future exploration of biomedical applications of nanoconjugates of PhG NPs.


Assuntos
Nanoconjugados , Nanopartículas , Metotrexato/química , Metotrexato/farmacologia , Nanoconjugados/química , Nanopartículas/química , Soroalbumina Bovina
12.
Langmuir ; 38(2): 603-604, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35038869
14.
J Phys Chem Lett ; 12(48): 11683-11687, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34843252

RESUMO

Phonon polaritons (PhPs) offer extreme confinement of optical fields and strong dispersion in the mid-infrared spectral region. To study the propagation and interference of PhPs in a 1-D system, we employ scattering scanning near-field optical microscopy (s-SNOM), analytical, and computational techniques to describe the resonance behavior observed in boron nitride nanotubes (BNNTs). In BNNTs of a sufficiently small length, the reflected standing waves from both terminals strongly interfere with one another, leading to large constructive enhancement at select wavelengths through the Fabry-Pérot interference. This 1-D nanoresonant behavior illustrates methods to increase and localize field strength at positions on a BNNT nanotube.

15.
Langmuir ; 37(43): 12723-12731, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34693716

RESUMO

Transitional composition between two thin-film morphologies of the block copolymer, polystyrene-block-poly(tert-butyl acrylate) (PS-b-PtBuA), was investigated using near-field infrared spectroscopy and atomic force microscopy mechanical measurements. These techniques allowed block identification with nanoscale spatial resolution and elucidated the material's sub-surface composition. PS was found to form coronae around the PtBuA block in spherical valleys on flat areas of the film, and coronae of PtBuA surrounding the PS lamellae were observed at the edge of the polymer film, where parallel lamellae are formed. Furthermore, we found that the peak position and width varied by location, which may be a result of block composition, chain tension, or substrate interaction.

16.
Langmuir ; 37(25): 7627-7629, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34182756
17.
ACS Nano ; 15(5): 8953-8964, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33960783

RESUMO

Phytoglycogen nanoparticles (PhG NPs), a single-molecule highly branched polysaccharide, exhibit excellent water retention, due to the abundance of close-packed hydroxyl groups forming hydrogen bonds with water. Here we report lubrication properties of close-packed adsorbed monolayers of PhG NPs acting as boundary lubricants. Using direct surface force measurements, we show that the hydrated nature of the NP layer results in its striking lubrication performance, with two distinct confinement-controlled friction coefficients. In the weak- to moderate-confinement regime, when the NP layer is compressed down to 8% of its original thickness under a normal pressure of up to 2.4 MPa, the NPs lubricate the surface with a friction coefficient of 10-3. In the strong-confinement regime, with 6.5% of the original layer thickness under a normal pressure of up to 8.1 MPa, the friction coefficient was 10-2. Analysis of the water content and energy dissipation in the confined NP film reveals that the lubrication is governed by synergistic contributions of unbound and bound water molecules, with the former contributing to lubrication properties in the weak- to moderate-confinement regime and the latter being responsible for the lubrication in the strong-confinement regime. These results unravel mechanistic insights that are essential for the design of lubricating systems based on strongly hydrated NPs.

18.
Langmuir ; 37(1): 1, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33430596
19.
Langmuir ; 37(2): 603-604, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33461298
20.
Cancer Immunol Immunother ; 70(3): 787-801, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32995942

RESUMO

CD47 is over-expressed in Acute Myeloid Leukemia (AML) and functions as an inhibitory signal, suppressing phagocytosis by binding to signal regulatory protein α (SIRPα) on the surface of macrophages. Inhibition of CD47 restores the immune surveillance of AML cells. However, the inhibition of CD47 in AML by activated macrophages and the subsequent effects on different immune response parameters are not fully understood. Here, we demonstrate the use of a distinct co-culture method to inhibit CD47 and therefore eliminate AML cells by macrophages in vitro. Human chemically induced THP-1 macrophages were activated using different concentrations of lipopolysaccharide (LPS) and co-culturing with three AML cancer cell lines (HL-60, NB4, and THP-1), respectively, as well as normal human peripheral blood mononuclear cells (PBMC). CD47 inhibition was observed in and selective to AML but not observed in normal PBMC. Additionally, calreticulin (CRT) levels were elevated in the same cell lines simultaneously, after co-culturing with activated human macrophages, but not elevated in normal cells. We also show that the activated macrophages secreted high levels of cytokines, including IL-12p70, IL-6, and TNF-α, consistent with the elimination of AML by macrophages. Our study reveals the potential of this model for screening new drugs against AML and the possibility of using human macrophages in AML treatment in the future.


Assuntos
Antígeno CD47/metabolismo , Calreticulina/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Biomarcadores , Antígeno CD47/genética , Calreticulina/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Técnicas de Cocultura , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Leucemia/etiologia , Leucemia/metabolismo , Leucemia/patologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...