Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 627: 122236, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36174851

RESUMO

The effect of dextran molecular weight on the in vitro physicochemical and immune properties of cytosine-phosphate-guanine (CpG) oligodeoxynucleotide-amino-dextran conjugates is investigated. CpG-1668 was conjugated at the 3'-end to amino-dextran of differing molecular weight (20, 40, 70 or 110-kDa) via a stable bis-aryl hydrazone linkage. Conjugate formation was confirmed by agarose gel electrophoresis and dynamic light scattering measured the size and surface charge of conjugates. Uptake and immune-stimulatory activity of CpG-dextran by antigen-presenting cells was evaluated by flow cytometry and confocal microscopy. Degradation by DNase I was monitored by loss of the fluorescent signal from labelled CpG and changes in size and zeta potential. Hydrazone bond formation (UV 354 nm) showed on average four CpG molecules conjugated per polymer. CpG-dextran prepared from 20 or 40-kDa dextran had a size of 17 nm while 70 or 110-kDa was 30 nm. CpG-dextran was preferentially taken up by dendritic cells, followed by macrophages and then B-cells. Only the 20-kDa dextran conjugate significantly enhanced uptake by bone-marrow derived dendritic cells (BMDCs) compared to free CpG. Confocal microscopy showed that CpG and CpG-dextran accumulates in the endo-lysosomal compartment of BMDCs at 24 h. All conjugates upregulated activation markers (CD40, CD80 or CD86) of BMDCs to a similar level as for free CpG. CpG-dextran 40-kDa produced highest levels of cytokines (TNF-α, IL-6, and IL-12p70) secreted by BMDCs. Enzymatic protection assays showed that the conjugate made from dextran 20-kDa provided no protection for CpG while the higher molecular weight conjugates reduced degradation by DNase I. The 40-kDa dextran conjugate produced the greatest in vitro immune activity, this was due to the conjugate being relatively small in size for cell uptake while sufficiently large enough to protect CpG from nuclease attack. These in vitro studies identify the need to consider the molecular weight of the carrier in bioconjugate design.


Assuntos
Células Dendríticas , Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Peso Molecular , Fosfatos/metabolismo , Dextranos/metabolismo , Citosina , Guanina , Citocinas , Oligodesoxirribonucleotídeos/farmacologia , Desoxirribonuclease I , Hidrazonas/farmacologia
2.
Mol Pharm ; 18(10): 3882-3893, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34529437

RESUMO

Compression-induced destabilization was investigated in various celecoxib amorphous solid dispersions containing hydroxypropyl methylcellulose (HPMC), poly(vinylpyrrolidone)/vinyl acetate copolymer (PVP/VA), or poly(vinylpyrrolidone) (PVP) at a concentration range of 1-10% w/w. Pharmaceutically relevant (125 MPa pressure with a minimal dwell time) and extreme (500 MPa pressure with a 60 s dwell time) compression conditions were applied to these systems, and the changes in their physical stability were monitored retrospectively (i.e., in the supercooled state) using dynamic differential scanning calorimetry (DSC) and low-frequency Raman (LFR) measurements over a broad temperature range (-90 to 200 and -150 to 140 °C, respectively). Both techniques revealed similar changes in the crystallization behavior between samples, where the application of a higher compression force of 500 MPa resulted in a more pronounced destabilization effect that was progressively mitigated with increasing polymer content. However, other aspects such as more favorable intermolecular interactions did not appear to have any effect on reducing this undesirable effect. Additionally, for the first time, LFR spectroscopy was used as a viable technique to determine the secondary or local glass-transition temperature, Tg,ß, a major indicator of the physical stability of neat amorphous pharmaceutical systems.


Assuntos
Celecoxib/química , Composição de Medicamentos , Estabilidade de Medicamentos , Varredura Diferencial de Calorimetria , Cristalização , Derivados da Hipromelose/química , Povidona/química , Pressão , Pirrolidinas , Análise Espectral Raman , Compostos de Vinila
3.
Vaccines (Basel) ; 9(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066318

RESUMO

Breast cancer (BC) is the most frequently diagnosed cancer in women, with many patients experiencing recurrence following treatment. Antigens delivered on virus-like particles (VLPs) induce a targeted immune response and here we investigated whether the co-delivery of multiple antigens could induce a superior anti-cancer response for BC immunotherapy. VLPs were designed to recombinantly express murine survivin and conjugated with an aberrantly glycosylated mucin-1 (MUC1) peptide using an intracellular cleavable bis-arylhydrazone linker. Western blotting, electron microscopy and UV absorption confirmed survivin-VLP expression and MUC1 conjugation. To assess the therapeutic efficacy of VLPs, orthotopic BC tumours were established by injecting C57mg.MUC1 cells into the mammary fat pad of mice, which were then vaccinated with surv.VLP-SS-MUC1 or VLP controls. While wild-type mice vaccinated with surv.VLP-SS-MUC1 showed enhanced survival compared to VLPs delivering either antigen alone, MUC1 transgenic mice vaccinated with surv.VLP-SS-MUC1 showed no enhanced survival compared to controls. Hence, while co-delivery of two tumour antigens on VLPs can induce a superior anti-tumour immune response compared to the delivery of single antigens, additional strategies must be employed to break tolerance when targeted tumour antigens are expressed as endogenous self-proteins. Using VLPs for the delivery of multiple antigens represents a promising approach to improving BC immunotherapy, and has the potential to be an integral part of combination therapy in the future.

4.
Vaccines (Basel) ; 9(3)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802376

RESUMO

Biologics can be combined with liquid polymer materials and electrospun to produce a dry nanofibrous scaffold. Unlike spray-drying and freeze-drying, electrospinning minimizes the physiological stress on sensitive materials, and nanofiber mat properties such as hydrophobicity, solubility, and melting temperature can be tuned based on the polymer composition. In this study, we explored the dry formulation of a virus-like particle (VLP) vaccine by electrospinning VLP derived from rabbit hemorrhagic disease virus modified to carry the MHC-I gp100 tumor-associated antigen epitope. VLP were added to a polyvinylpyrrolidone (PVP) solution (15% w/v) followed by electrospinning at 24 kV. Formation of a nanofibrous mat was confirmed by scanning electron microscopy, and the presence of VLP was confirmed by transmission electron microscopy and Western blot. VLP from the nanofibers induced T-cell activation and interferon- (IFN-) γ production in vitro. To confirm in vivo cytotoxicity, Pmel mice treated by injection with gp100 VLP from nanofibers induced a gp100 specific immune response, lysing approximately 65% of gp100-pulsed target cells, comparable to mice vaccinated with gp100 VLP in PBS. VLP from nanofibers also induced an antibody response. This work shows that electrospinning can be used to dry-formulate VLP, preserving both humoral and cell-mediated immunity.

5.
Data Brief ; 35: 106883, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33748357

RESUMO

Cytosine-phosphate-guanine (CpG) oligonucleotides are commonly-used vaccine adjuvants to promote the activation of antigen-presenting cells (APCs). To mount an effective immune response, CpG needs to be internalized and bind to its endosomal Toll-like receptor 9 (TLR-9) inside the APCs. Using flow cytometry and fluorescence microscopy, this article presents the cellular uptake data of the amino-dextran nanoparticle (aDNP) and aDNP loaded with CpG immobilized on its surface by either electrostatic adsorption or covalent conjugation. The uptake of fluorescently-labelled aDNPs by murine splenic dendritic cells and macrophages was determined by flow cytometry and uptake by murine bone-marrow-derived dendritic cells was evaluated by fluorescence microscopy. The data presented in this paper correlates with the in vitro immune-stimulatory activity observed for the two different CpG loading methods in the research article "Nanoparticle system based on amino-dextran as a drug delivery vehicle: immune-stimulatory CpG-oligonucleotide loading and delivery" (Nguyen et al., 2020) [1]. The data provide experimental evidence for a better understanding how the nanoparticle surface loading method of CpG influences the uptake of these nanoparticles by antigen-presenting cells as a step guide in the design of more effective vaccine formulations.

6.
Bioorg Med Chem ; 29: 115837, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223463

RESUMO

A series of C-2 derivatized 8-sulfonamidoquinolines were evaluated for their antibacterial activity against the common mastitis causative pathogens Streptococcus uberis, Staphylococcus aureus and Escherichia coli, both in the presence and absence of supplementary zinc (50 µM ZnSO4). The vast majority of compounds tested were demonstrated to be significantly more active against S. uberis when in the presence of supplementary zinc (MICs as low as 0.125 µg/mL were observed in the presence of 50 µM ZnSO4). Compounds 5, 34-36, 39, 58, 79, 82, 94 and 95 were shown to display the greatest antibacterial activity against S. aureus (MIC ≤ 8 µg/mL; both in the presence and absence of supplementary zinc), while compounds 56, 58 and 66 were demonstrated to also exhibit activity against E. coli (MIC ≤ 16 µg/mL; under all conditions). Compounds 56, 58 and 66 were subsequently confirmed to be bactericidal against all three mastitis pathogens studied, with MBCs (≥3log10 CFU/mL reduction) of ≤ 32 µg/mL (in both the presence and absence of 50 µM ZnSO4). To validate the sanitizing activity of compounds 56, 58 and 66, a quantitative suspension disinfection (sanitizer) test was performed. Sanitizing activity (>5log10 CFU/mL reduction in 5 min) was observed against both S. uberis and E. coli at compound concentrations as low as 1 mg/mL (compounds 56, 58 and 66), and against S. aureus at 1 mg/mL (compound 58); thereby validating the potential of compounds 56, 58 and 66 to function as topical sanitizers designed explicitly for use in non-human applications.


Assuntos
Amidas/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Quinolinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Amidas/síntese química , Amidas/química , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
7.
Pharmaceutics ; 12(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260874

RESUMO

The aim of this study is to prepare and characterize an amino-dextran nanoparticle (aDNP) platform and investigate two loading strategies for unmethylated cytosine-phosphate-guanine (CpG) oligonucleotide. aDNP was prepared by desolvation of amino-dextran followed by the chemical crosslinking of amino groups. Size, surface charge, and surface morphology of aDNP was determined by dynamic light scattering and transmission electron microscopy. CpG was either loaded onto aDNP by adsorption (CpG-adsorbed-aDNP) or conjugated to aDNP (CpG-conjugated-aDNP). In vitro cytokine production by bone marrow-derived dendritic cells (BMDCs) was measured by flow cytometry. aDNPs size and zeta potential could be controlled to produce uniform particles in the size range of 50 to 300 nm, surface charge of -16.5 to +14 mV, and were spherical in shape. Formulation control parameters investigated included the anti-solvent, water-to-anti-solvent ratio, level of amine functionality of dextran, and the molar ratio of glutaraldehyde to amine. aDNP could be lyophilized without additional cryoprotectant. Unloaded cationic aDNP (+13 mV) showed acceptable in vitro hemolysis. Unloaded and CpG-loaded aDNPs showed no cytotoxicity on BMDCs. CpG-loaded nanoparticles stimulated cytokine production by BMDCs, the level of cytokine production was higher for CpG-conjugated-aDNP compared to CpG-absorbed-aDNP. aDNP is a promising new drug delivery platform as its offers versatility in loading and tuning of particle properties.

8.
Bioorg Med Chem Lett ; 30(11): 127110, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32229060

RESUMO

A series of substituted sulfonamide bioisosteres of 8-hydroxyquinoline were evaluated for their antibacterial activity against the common mastitis causative pathogens Streptococcus uberis, Staphylococcus aureus and Escherichia coli, both in the presence and absence of supplementary zinc. Compounds 9a-e, 10a-c, 11a-e, 12 and 13 were demonstrated to have MICs of 0.0625 µg/mL against S. uberis in the presence of 50 µM ZnSO4. Against S. aureus compounds 9g (MIC 4 µg/mL) and 11d (MIC 8 µg/mL) showed the greatest activity, whereas all compounds were found to be inactive against E. coli (MIC > 256 µg/mL); again in the presence of 50 µM ZnSO4. All compounds were demonstrated to be significantly less active in the absence of supplementary zinc. Compound 9g was subsequently confirmed to be bactericidal, with an MBC (≥3log10 cfu/mL reduction) of 0.125 µg/mL against S. uberis in the presence of 50 µM ZnSO4. To validate the sanitising activity of compound 9g in the presence of supplementary zinc, a quantitative suspension disinfection (sanitizer) test was performed. In this preliminary test, sanitizing activity (>5log10 reduction of CFU/mL in 5 min) was observed against S. uberis for compound 9g at concentrations as low as 1 mg/mL, validating the potential of this compound to function as a topical sanitizer against the major environmental mastitis-causing microorganism S. uberis.


Assuntos
Antibacterianos/química , Oxiquinolina/química , Sulfanilamida/química , Zinco/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Oxiquinolina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Relação Estrutura-Atividade
9.
Pharm Nanotechnol ; 7(6): 460-468, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31657694

RESUMO

BACKGROUND: A key challenge in the manufacturing of polymeric colloids is producing nanoparticles with good batch-to-batch consistency. OBJECTIVE: Develop a robust microfluidics method for the preparation of PEG-PLGA nanoparticles using dimethyl sulfoxide (DMSO) as the organic phase solvent for the encapsulation of DMSO soluble agents. METHODS: Microfluidic process parameters, total flow rate (10 mL/min), flow rate ratio (1:1) of the aqueous phase and the organic polymer solution, and polymer concentration (5 mg/ml). Polyvinyl alcohol (PVA) or human serum albumin (HSA) was included in the aqueous phase. Dynamic light scattering and transmission electron microscopy were used to investigate the size and morphology of particles. RESULTS: PLGA nanoparticles made using DMSO with the aqueous solvent containing PVA (2%) had an average size of 60 nm while PLGA-PEG nanoparticles made with and without PVA (2%) had an average size of 70 and 100 nm, respectively. PLGA-PEG nanoparticles generated with or without PVA had a high batch-to-batch coefficient of variation for the particle size of 20% while for PLGA nanoparticles with PVA it was 4%. HSA added to the aqueous phase reduced the size and the zeta potential of PEG-PLGA nanoparticles as well the batch-to-batch coefficient of variation for particle size to < 5%. Nanoparticles were stable in solution and after lyophilized in the presence of sucrose. CONCLUSION: Albumin was involved in the self-assembly of PEG-PLGA nanoparticles altering the physicochemical properties of nanoparticles. Adding protein to the aqueous phase in the microfluidic fabrication process may be a valuable tool for tuning the properties of nanoparticles and improving batch-to-batch consistency.


Assuntos
Poliésteres/síntese química , Polietilenoglicóis/síntese química , Álcool de Polivinil/química , Albumina Sérica Humana/química , Humanos , Técnicas Analíticas Microfluídicas , Nanopartículas , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química
10.
Data Brief ; 23: 103759, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31372420

RESUMO

This article contains the uptake data of two reducible antigen-adjuvant conjugates with different sensitivities to the extracellular and intracellular reductive environment. Using a linker with different redox sensitivity the adjuvant cytosine-phosphate-guanine (CpG) was conjugated to the fluorescently labeled model tumour antigen ovalbumin (OVA). The uptake of the conjugates by dendritic cells in a total splenocyte culture was determined using flow cytometry. The data presented in this paper supports the finding in the research article "Intracellular cleavable CpG oligodeoxynucleotide - antigen conjugate enhances anti-tumour immunity" (Kramer et al., 2016) [1].

11.
Expert Rev Vaccines ; 17(9): 833-849, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30173619

RESUMO

INTRODUCTION: Virus-like particle (VLP) vaccines face significant challenges in their translation from laboratory models, to routine clinical administration. While some VLP vaccines thrive and are readily adopted into the vaccination schedule, others are restrained by regulatory obstacles, proprietary limitations, or finding their niche amongst the crowded vaccine market. Often the necessity to supplant an existing vaccination regimen possesses an immediate obstacle for the development of a VLP vaccine, despite any preclinical advantages identified over the competition. Novelty, adaptability and formulation compatibility may prove invaluable in helping place VLP vaccines at the forefront of vaccination technology. AREAS COVERED: The purpose of this review is to outline the diversity of VLP vaccines, VLP-specific immune responses, and to explore how modern formulation and delivery techniques can enhance the clinical relevance and overall success of VLP vaccines. EXPERT COMMENTARY: The role of formation science, with an emphasis on the diversity of immune responses induced by VLP, is underrepresented amongst clinical trials for VLP vaccines. Harnessing such diversity, particularly through the use of combinations of select excipients and adjuvants, will be paramount in the development of VLP vaccines.


Assuntos
Pesquisa Translacional Biomédica/métodos , Vacinação , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Animais , Excipientes/química , Humanos , Imunogenicidade da Vacina/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia
12.
Carbohydr Polym ; 163: 216-226, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28267500

RESUMO

Targeted delivery and retention of drug formulations in the olfactory mucosa, the target site for nose-to-brain drug absorption is a major challenge due to the geometrical complexity of the nose and nasal clearance. Recent modelling data indicates that 10µm-sized microparticles show maximum deposition in the olfactory mucosa. In the present study we tested the hypothesis that 10µm-sized mucoadhesive microparticles would preferentially deposit on, and increase retention of drug on, the olfactory mucosa in a novel 3D-printed human nasal-replica cast under simulated breathing. The naturally occurring mucoadhesive polymer, tamarind seed polysaccharide (TSP) was used to formulate the microparticles using a spray drying technique. Physicochemical properties of microparticles such as size, morphology and mucoadhesiveness was investigated using a combination of laser diffraction, electron microscopy and texture-analysis. Furthermore, FITC-dextrans (5-40kDa) were incorporated in TSP-microparticles as model drugs. Size-dependent permeability of the FITC-dextrans was observed ex vivo using porcine nasal mucosa. Using the human nasal-replica cast, greater deposition of 10µm TSP-microparticles in the olfactory region was observed compared to TSP-microparticles 2µm in size. Collectively, these findings support our hypothesis that 10µm-sized mucoadhesive microparticles can achieve selective deposition and retention of drug in the olfactory mucosa.


Assuntos
Administração Intranasal , Sistemas de Liberação de Medicamentos , Mucosa Nasal , Polissacarídeos/química , Tamarindus/química , Animais , Encéfalo , Humanos , Preparações Farmacêuticas/administração & dosagem , Sementes/química , Suínos
13.
Eur J Pharm Biopharm ; 114: 213-220, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28167295

RESUMO

The purpose of this study was to evaluate electrospun drug loaded nanofibers as a new matrix for minitablets. Prednisone, a poorly water-soluble drug, was loaded into povidone (polyvinylpyrrolidone, PVP) nanofibers using the process of electrospinning. The drug-loaded nanofiber mat was compressed into minitablets with a 2mm diameter and a height of 2.63±0.04mm. SEM analysis of the minitablet identified a nano-web structure with a nanofiber diameter in the range of 400-500nm. The minitablets met the requirements of the US Pharmacopeia with respect to content uniformity and friability. DSC and XRPD analysis of the minitablet indicated that the drug-polymer mixture was a one-phase amorphous system. XRPD analysis of the drug loaded nanofiber mat after 10-months of storage at ambient temperature showed no evidence of recrystallization of the drug. Solubility and dissolution properties of the drug formulated into a nanofiber mat and minitablet were evaluated. These results show that electrospun nanofibers may provide a useful matrix for the further development of minitablets.


Assuntos
Nanofibras/química , Comprimidos/química , Varredura Diferencial de Calorimetria , Composição de Medicamentos , Tamanho da Partícula , Excipientes Farmacêuticos , Povidona/química , Prednisona/administração & dosagem , Prednisona/farmacocinética , Difração de Raios X
14.
Mol Ther ; 25(1): 62-70, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28129129

RESUMO

Conjugation of a vaccine adjuvant to an antigen enhances anti-tumor immune responses. Direct chemical conjugation, however, may limit their processing by the antigen-presenting cell for immune stimulation. To test this hypothesis, antigen-adjuvant conjugates were designed to be cleaved by an intracellular trigger to release antigen and adjuvant from each other. The different reductive environment inside and outside antigen-presenting cells was used as a trigger for targeted intracellular release. Two redox-responsive disulphide linkers were used to conjugate the model antigen ovalbumin to CpG. In vitro stability assays with the reductant glutathione showed that one conjugate (SS) was cleaved by glutathione concentrations of the extra- and intracellular compartments. A second conjugate (HYN-SS) was only cleaved at the higher intracellular glutathione concentration. In vitro cell culture studies showed that high T cell responses were generated by the HYN-SS and the stable conjugate HYN. The SS conjugate induced a lower T cell response similar to a mixture of CpG and ovalbumin. An in vivo therapeutic tumor trial demonstrated a superior survival rate of 9/10 for mice vaccinated with HYN-SS conjugate compared to HYN (6/10), SS (2/10), and the mixture (2/10). This intracellular cleavable conjugation strategy represents a promising approach to improve cancer immunotherapy of soluble vaccines.


Assuntos
Adjuvantes Imunológicos , Antígenos/imunologia , Vacinas Anticâncer/imunologia , Neoplasias/imunologia , Oligodesoxirribonucleotídeos , Adjuvantes Imunológicos/química , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Modelos Animais de Doenças , Melanoma Experimental , Camundongos , Neoplasias/mortalidade , Neoplasias/patologia , Neoplasias/terapia , Oligodesoxirribonucleotídeos/química , Ovalbumina/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
15.
ACS Omega ; 2(1): 227-235, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023513

RESUMO

Conjugation of CpG to an antigen induces a stronger immune response compared to that of the mixture. This study compares the in vitro immunostimulatory activity of CpG conjugated via either its 5' or 3' end to the model antigen ovalbumin (OVA). CpG modified with an amine at either the 5' or 3' end was conjugated to OVA via a stable bis-aryl hydrazone bond. Similar levels of CpG conjugation to OVA were observed for both conjugates on the basis of the absorbance at 360 nm for the formation of the bis-aryl hydrazone bond, which determined 2.8 ± 0.3 CpGs linked per OVA. Both the 5' and 3' CpG-OVA conjugates had similar size-exclusion chromatography elution profiles. The immunostimulatory properties of the conjugates were determined by dendritic cells (DCs) and T-cells isolated from mice. The activation of DCs was determined by the upregulation of activation markers CD86 and CD40. T-cells were co-cultured with stimulated DCs, and the immunogenicity was determined by measuring T-cell proliferation and interferon γ production. Both the CpG 5'- and 3'-linked conjugates induced the same level (p > 0.5) of DC activation markers, which were significantly higher than those of the untreated control. Similarly, T-cell assays showed no significant difference (p > 0.5) between the 5' and 3' conjugates with respect to T-cell proliferation and interferon γ production. The 5' and 3' conjugates induced T-cell activation significantly higher than the mixture of CpG and OVA. This study showed that the end at which CpG is conjugated to an antigen has no influence on the generation of a T-cell-based immune response in vitro.

16.
Eur J Pharm Sci ; 34(4-5): 309-20, 2008 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-18586470

RESUMO

PEGylation which is reversed after the therapeutic agent reaches the target cell presents an attractive feature for drug, protein or nucleic acid delivery. Amine-reactive, endosomal pH cleavable polyethylene glycol aldehyde-carboxypyridylhydrazone, N-hydroxysuccinimide esters (PEG-HZN-NHS) were synthesized and applied for bioreversible surface shielding of DNA polyplexes. Monofunctional mPEG-HZN-NHS was synthesized by reacting succinimidyl hydraziniumnicotinate with mPEG-butyraldehyde (20 kDa). Bifunctional OPSS-PEG-HZN-NHS was synthesized analogously via a omega-2-pyridyldithio-PEG (10 kDa) propionaldehyde intermediate. Polyethylenimine (PEI) polyplexes were reacted with the pH-sensitive (mPEG-HZN-NHS) or the corresponding stable (mPEG-NHS) reagent. Both types of polyplexes remained shielded at pH 7.4 as demonstrated by particle size and zeta potential measurements after 4h of incubation at 37 degrees C. Polyplex deshielding at endosomal pH 5 was observed only with the mPEG-HZN-NHS shielded particles. This was confirmed by fluorescence correlation spectroscopy using the analogous Alexa-488 fluorescently labeled bifunctional PEGylation reagents. Luciferase gene transfections with epidermal growth factor (EGF) containing polyplexes using EGF-receptor overexpressing hepatoma HUH7 cells showed an up to 16-fold enhancement in gene expression with the reversibly shielded polyplexes as compared to stably shielded polyplexes. Consistently, the reversibly shielded polyplexes mediated also an enhanced tumor specific in vivo transgene expression after intravenous administration in a subcutaneous HUH7 tumor model in SCID mice.


Assuntos
Aminas/síntese química , DNA/metabolismo , Hidrazonas/síntese química , Polietilenoglicóis/síntese química , Polietilenoimina/química , Piridinas/síntese química , Transfecção , Animais , Linhagem Celular Tumoral , DNA/química , Endossomos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Feminino , Genes Reporter , Humanos , Concentração de Íons de Hidrogênio , Neoplasias Hepáticas Experimentais/metabolismo , Luciferases , Masculino , Camundongos , Camundongos SCID , Tamanho da Partícula , Espectrometria de Fluorescência , Fatores de Tempo
17.
Biomacromolecules ; 9(2): 724-32, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18220349

RESUMO

In this work, we design and investigate the complex formation of highly uniform monomolecular siRNA complexes utilizing block copolymers consisting of a cationic peptide moiety covalently bound to a poly(ethylene glycol) (PEG) moiety. The aim of the study was to design a shielded siRNA construct containing a single siRNA molecule to achieve a sterically stabilized complex with enhanced diffusive properties in macromolecular networks. Using a 14 lysine-PEG (K14-PEG) linear diblock copolymer, formation of monomolecular siRNA complexes with a stoichiometric 1:3 grafting density of siRNA to PEG is realized. Alternatively, similar PEGylated monomolecular siRNA particles are achieved through complexation with a graft copolymer consisting of six cationic peptide side chains bound to a PEG backbone. The hydrodynamic radii of the resulting complexes as measured by fluorescence correlation spectroscopy (FCS) were found to be in good agreement with theoretical predictions using polymer brush scaling theory of a PEG decorated rodlike molecule. It is furthermore demonstrated that the PEG coating of the siRNA-PEG complexes can be rendered biodegradable through the use of a pH-sensitive hydrazone or a reducible disulfide bond linker between the K14 and the PEG blocks. To model transport under in vivo conditions, diffusion of these PEGylated siRNA complexes is studied in various charged and uncharged matrix materials. In PEG solutions, the diffusion coefficient of the siRNA complex is observed to decrease with increasing polymer concentration, in agreement with theory of probe diffusion in semidilute solutions. In charged networks, the behavior is considerably more complex. FCS measurements in fibrin gels indicate complete dissociation of the diblock copolymer from the complex, while transport in collagen solutions results in particle aggregation.


Assuntos
Peptídeos/síntese química , Polietilenoglicóis/síntese química , Polímeros/síntese química , RNA Interferente Pequeno/síntese química , Animais , Bovinos , Substâncias Macromoleculares/síntese química
18.
Bioconjug Chem ; 18(4): 1218-25, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17477500

RESUMO

p-Piperazinobenzaldehyde methoxy poly(ethylene glycol) (mPEG, 5 kDa) acetal was synthesized by the Buchwald-Hartwig coupling reaction from piperazine and p-bromobenzaldehyde mPEG acetal. Introduction of a maleimide moiety yielded a novel acetal-based PEGylation reagent (PEG-acetal-MAL) for pH-sensitive conjugation of PEG to thiol-functionalized biomolecules. For reversible shielding of polyplexes, PEG-acetal-MAL was conjugated to polyethylenimine (PEI). At 37 degrees C, the PEG-acetal-PEI conjugate had a half-life of 3 min at endosomal pH 5.5 and 2 h at physiological pH 7.4, respectively. PEI polyplexes containing PEG-acetal-PEI had a zeta potential of +3 mV and were stable to salt-induced aggregation for 2 h at pH 7.4. In contrast, at endosomal pH, the particles were deshielded and aggregated within 0.5 h. Epidermal growth factor or transferrin receptor-targeted polyplexes shielded with the pH-sensitive PEG-acetal mediated enhanced luciferase gene expression in receptor-expressing target cells (Renca-EGFR or K562) as compared to stably shielded control polyplexes. Thus, the novel PEG-acetal-MAL reagent may present a versatile tool for drug and gene delivery formulations when pH-sensitive PEGylation is preferred.


Assuntos
Acetais/química , DNA/química , Maleimidas/química , Polietilenoglicóis/química , Polietilenoimina/química , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Indicadores e Reagentes/química , Células K562 , Luciferases/genética , Camundongos , Tamanho da Partícula , Transfecção
19.
J Phys Chem B ; 110(10): 4548-54, 2006 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-16526683

RESUMO

Fluorescence correlation spectroscopy (FCS) and gel electrophoresis measurements are performed to investigate both the number and size of complexes of linear double-stranded DNA (dsDNA) fragments with 1:1 diblock copolymers consisting of a cationic moiety, branched polyethyleneimine (bPEI) of 2, 10, or 25 kDa, covalently bound to a neutral shielding moiety, poly(ethylene glycol) (PEG; 20 kDa). By systematically decreasing the bPEI length, the PEG grafting density along the DNA chain can be directly controlled. For 25 and 10 kDa bPEI-PEG copolymers, severe aggregation is observed despite the presence of the shielding PEG. Upon decreasing the bPEI length to 2 kDa, controlled self-assembly of monomolecular DNA nanoparticles is observed. The resulting complexes are in quantitative agreement with a theoretical model based on a single DNA encased in a dense PEG polymer brush layer. The resulting PEGylated complexes show high stability against both salt and protein and hence are of potential use for in vivo gene delivery studies.


Assuntos
DNA/química , Polietilenoglicóis/química , Polietilenoimina/análogos & derivados , Polietilenoimina/química , DNA/síntese química , Difusão , Eletroforese em Gel de Poliacrilamida , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Modelos Moleculares , Nanopartículas/química , Polietilenoglicóis/síntese química , Polietilenoimina/síntese química , Espectrometria de Fluorescência
20.
J Gene Med ; 8(2): 186-97, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16245365

RESUMO

BACKGROUND: Polycation (PC, polyplex), cationic lipid (CL, lipoplex), and a combination of PC/CL (lipopolyplex) formulations were investigated for gene transfer to slow-proliferating human colon carcinoma cell lines (COGA). METHODS: The luciferase reporter gene was complexed with either PC, CL, or PC/CL. PCs included linear (PEI22lin, 22 kDa) and branched polyethylenimine (PEI2k, 2 kDa; PEI25br, 25 kDa) and poly-L-lysine (PLL18 with 18 lysine monomers). CLs included DOCSPER, DOSPER and DOTAP. Lipopolyplexes were formed by either sequentially first mixing DNA with PC or CL, followed by addition of CL or PC, respectively, or simultaneously with both PC and CL. Particle size and zeta-potential were determined and gene transfer and cytotoxicity were quantified on COGA-3, -5, -12, HeLa and Sw480 cells. RESULTS: The highest gene transfer was achieved when DNA was first complexed with PC followed by CL. At low ionic strength, particles were small (50-130 nm) with a zeta-potential of +20-40 mV. At physiological ionic strength, only lipoplexes of DOCSPER or DOSPER and their respective lipopolyplexes with PEI25br were stable to aggregation (140-220 nm). Lipopolyplexes of PEI25br were between 5- to 400-fold more efficient compared to the corresponding lipoplexes or polyplexes in all cases. Chloroquine did not significantly affect lipopolyplex-mediated gene transfer. CONCLUSIONS: Lipopolyplex formulations of PEI25br in combination with multivalent CLs (DOCSPER, DOSPER) are promising tools for in vitro and potentially also in vivo gene transfer to colorectal cancer cells.


Assuntos
Carcinoma/metabolismo , Neoplasias do Colo/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos , Lipídeos , Carcinoma/tratamento farmacológico , Cloroquina/farmacologia , Neoplasias do Colo/tratamento farmacológico , Desoxirribonuclease I , Vetores Genéticos/química , Vetores Genéticos/toxicidade , Células HeLa , Humanos , Técnicas In Vitro , Lipídeos/química , Lipídeos/toxicidade , Microscopia de Força Atômica , Plasmídeos , Poliaminas/química , Poliaminas/toxicidade , Polieletrólitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...