Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Drug Metab Dispos ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38719744

RESUMO

Brepocitinib is an oral once-daily Janus kinase 1 and Tyrosine kinase 2 selective inhibitor currently in development for the treatment of several autoimmune disorders. Mass balance and metabolic profiles were determined using accelerator mass spectrometry in six healthy male participants following a single oral 60 mg dose of 14C-brepocitinib (~300 nCi). The average mass balance recovery was 96.7% {plus minus} 6.3% with the majority of dose (88.0% {plus minus} 8.0%) recovered in urine and 8.7% {plus minus} 2.1% of the dose in recovered in feces. Absorption of brepocitinib was rapid, with maximal plasma concentrations of total radioactivity and brepocitinib achieved within 0.5 hours after dosing. Circulating radioactivity consisted primarily of brepocitinib (47.8%) and metabolite M1 (37.1%) derived from hydroxylation at the C5' position of the pyrazole ring. Fractional contributions to metabolism via cytochrome P450 (CYP) enzymes were determined to be 0.77 for CYP3A4/5 and 0.14 for CYP1A2 based on phenotyping studies in HLM. However, additional clinical studies are required to understand the potential contribution of CYP1A1. Approximately 83% of the dose was eliminated as N-methylpyrazolyl oxidative metabolites, with 52.1% of the dose excreted as M1 alone. Notably, M1 was not observed as a circulating metabolite in earlier metabolic profiling of human plasma from a multiple ascending study with unlabeled brepocitinib. Mechanistic studies revealed M1 was highly unstable in human plasma and phosphate buffer, undergoing chemical oxidation leading to loss of the 5-hydroxy-1-methylpyrazole moiety and formation of aminopyrimidine cleavage product M2. Time dependent inhibition and trapping studies with M1 yielded insights into the mechanism of this unusual and unexpected instability. Significance Statement This work describes the mass balance and metabolic profile of brepocitinib in human, a JAK1/TYK2 inhibitor being developed for treatment of autoimmune diseases.

2.
Drug Metab Dispos ; 52(5): 323-336, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38360917

RESUMO

BIIB104 (formerly PF-04958242), N-((3S,4S)-4-(4-(5-cyanothiophen-2-yl)phenoxy)tetrahydrofuran-3-yl)propane-2-sulfonamide, is an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor potentiator investigated for the treatment of cognitive impairment associated with schizophrenia. Preliminary in vitro metabolism studies with non-radiolabeled BIIB104 in rat, dog, and human liver microsomes (RLM, DLM, and HLM) showed O-dealkylation in all three species, tetrahydrofuran hydroxylation dominating in DLM and HLM, and thiophene hydroxylation prevalent in RLM. However, a subsequent rat mass balance study with [nitrile-14C]BIIB104 showed incomplete recovery of administered radioactivity (∼80%) from urine and feces over 7 days following an oral dose, and an exceptionally long plasma total radioactivity half-life. Radiochromatographic metabolite profiling and identification, including chemical derivation, revealed that [14C]cyanide was a major metabolite of [nitrile-14C]BIIB104 in RLM, but a minor and trace metabolite in DLM and HLM, respectively. Correspondingly in bile duct-cannulated rats, [14C]thiocyanate accounted for ∼53% of total radioactivity excreted over 48 hours postdose and it, as an endogenous substance, explained the exceptionally long plasma radioactivity half-life. The release of [14C]cyanide from the 2-cyanothiophene moiety is postulated to follow an epoxidation-initiated thiophene-opening based on the detection of non-radiolabeled counterpart metabolites in RLM. This unusual biotransformation serves as a lesson regarding placement of the radioactive label on an aryl nitrile when material will be used for evaluating the metabolism of a new drug candidate. Additionally, the potential cyanide metabolite of nitrile-containing drug molecules may be detected in liver microsomes with liquid chromatography-mass spectrometry following a chemical derivatization. SIGNIFICANCE STATEMENT: Using [nitrile-14C]BIIB104, non-intuitive metabolites of BIIB104 were discovered involving a novel cyanide release from the 2-cyanothiophene motif via a postulated epoxidation-initiated thiophene-opening. This unusual biotransformation serves as a lesson regarding placement of the radioactive label on an aryl nitrile when material will be used for evaluating the metabolism of a new drug candidate.


Assuntos
Cianetos , Tiocianatos , Humanos , Ratos , Animais , Cães , Cianetos/análise , Tiocianatos/análise , Biotransformação , Fezes/química , Nitrilas , Tiofenos/análise , Furanos
3.
Drug Metab Dispos ; 50(8): 1106-1118, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35701182

RESUMO

Abrocitinib is an oral once-daily Janus kinase 1 selective inhibitor being developed for the treatment of moderate-to-severe atopic dermatitis. This study examined the disposition of abrocitinib in male participants following oral and intravenous administration using accelerator mass spectroscopy methodology to estimate pharmacokinetic parameters and characterize metabolite (M) profiles. The results indicated abrocitinib had a systemic clearance of 64.2 L/h, a steady-state volume of distribution of 100 L, extent of absorption >90%, time to maximum plasma concentration of ∼0.5 hours, and absolute oral bioavailability of 60%. The half-life of both abrocitinib and total radioactivity was similar, with no indication of metabolite accumulation. Abrocitinib was the main circulating drug species in plasma (∼26%), with 3 major monohydroxylated metabolites (M1, M2, and M4) at >10%. Oxidative metabolism was the primary route of elimination for abrocitinib, with the greatest disposition of radioactivity shown in the urine (∼85%). In vitro phenotyping indicated abrocitinib cytochrome P450 fraction of metabolism assignments of 0.53 for CYP2C19, 0.30 for CYP2C9, 0.11 for CYP3A4, and ∼0.06 for CYP2B6. The principal systemic metabolites M1, M2, and M4 were primarily cleared renally. Abrocitinib, M1, and M2 showed pharmacology with similar Janus kinase 1 selectivity, whereas M4 was inactive. SIGNIFICANCE STATEMENT: This study provides a detailed understanding of the disposition and metabolism of abrocitinib, a Janus kinase inhibitor for atopic dermatitis, in humans, as well as characterization of clearance pathways and pharmacokinetics of abrocitinib and its metabolites.


Assuntos
Dermatite Atópica , Inibidores de Janus Quinases , Pirimidinas , Sulfonamidas , Administração Oral , Dermatite Atópica/tratamento farmacológico , Humanos , Janus Quinase 1/antagonistas & inibidores , Inibidores de Janus Quinases/administração & dosagem , Inibidores de Janus Quinases/farmacocinética , Inibidores de Janus Quinases/farmacologia , Masculino , Pirimidinas/administração & dosagem , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia
4.
Clin Pharmacol Ther ; 112(6): 1201-1206, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35678736

RESUMO

Typically human absorption, distribution, metabolism, and excretion (ADME) studies are executed using radiolabeled (e.g., carbon-14) material, the synthesis of which is a time-consuming activity. In this study, we were able to assess the metabolism and excretion of unlabeled nirmatrelvir (PF-07321332) within the first-in-human study via a novel application of quantitative fluorine (19 F) nuclear magnetic resonance (NMR) spectroscopy in place of a standard radiolabel ADME study. Six healthy participants received a single 300-mg oral dose of nirmatrelvir (in combination with ritonavir), and excreta were collected up to 10 days. Virtually all drug-related material was recovered within 5 days, and mass balance was achieved with 84.9 ± 8.9% (range = 70.7-95.5%) of the administered dose recovered in urine and feces. The excretion of fluorine-containing material in urine and feces was 47.0% and 33.7%, respectively. Unchanged nirmatrelvir represented 82.5% of the normalized drug-related material with a carboxylic acid metabolite M5, derived from hydrolysis of the P2 amide bond, present at 12.1% of dose. Nirmatrelvir was the only drug-related entity observed in plasma. Approximately 4.2% of the dose was excreted as metabolite M8 (measured by liquid chromatography-mass spectrometry), which was 19 F NMR silent due to hydrolysis of the trifluoroacetamide moiety. Hydrolysis of nirmatrelvir to M5 and M8 was shown to occur in cultures of human gut microflora. This successful demonstration of quantitative 19 F NMR spectroscopy to establish the mass-balance, excretion, and metabolic profile of nirmatrelvir offers an advantageous means to execute human ADME studies for fluorine-containing compounds early in drug development.


Assuntos
Desenvolvimento de Medicamentos , Flúor , Humanos , Radioisótopos de Carbono , Espectroscopia de Ressonância Magnética , Administração Oral
5.
Clin Pharmacol Drug Dev ; 11(7): 815-825, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35506501

RESUMO

Zimlovisertib (PF-06650833) is a selective, reversible inhibitor of interleukin-1 receptor-associated kinase 4 (IRAK4) with anti-inflammatory effects. This phase 1, open-label, fixed-sequence, two-period, single-dose study aimed to evaluate the mass balance and excretion rate of zimlovisertib in healthy male participants using a 14 C-microtracer approach. All six participants received 300 mg 14 C-zimlovisertib with lower radioactivity per mass unit orally in Period A, then unlabeled zimlovisertib 300 mg orally and 14 C-zimlovisertib 135 µg intravenously (IV) in Period B. Study objectives included extent and rate of excretion of 14 C-zimlovisertib, pharmacokinetics, and safety and tolerability of oral and IV zimlovisertib. Total radioactivity recovered in urine and feces was 82.4% ± 6.8% (urine 23.1% ± 12.3%, feces 59.3% ± 9.7%) in Period A. Zimlovisertib was absorbed rapidly following oral administration, with the fraction absorbed estimated to be 44%. Absolute oral bioavailability of the 300-mg dose was 17.4% (90% confidence interval 14.1%, 21.5%) using the dose-normalized area under the concentration-time curve from time 0 to infinity. There were no deaths, serious adverse events (AEs), severe AEs, discontinuations or dose reductions due to AEs, and no clinically significant laboratory abnormalities. These results demonstrate that zimlovisertib had low absolute oral bioavailability and low absorption (<50%).


Assuntos
Disponibilidade Biológica , Administração Oral , Fezes , Voluntários Saudáveis , Humanos , Masculino
6.
Drug Metab Dispos ; 50(5): 576-590, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35153195

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3C-like protease inhibitor PF-07321332 (nirmatrelvir), in combination with ritonavir (Paxlovid), was recently granted emergency use authorization by multiple regulatory agencies for the treatment of coronavirus disease 2019 (COVID-19) in adults and pediatric patients. Disposition studies on nirmatrelvir in animals and in human reagents, which were used to support clinical studies, are described herein. Plasma clearance was moderate in rats (27.2 ml/min per kg) and monkeys (17.1 ml/min per kg), resulting in half-lives of 5.1 and 0.8 hours, respectively. The corresponding oral bioavailability was moderate in rats (34%-50%) and low in monkeys (8.5%), primarily due to oxidative metabolism along the gastrointestinal tract in this species. Nirmatrelvir demonstrated moderate plasma protein binding in rats, monkeys, and humans with mean unbound fractions ranging from 0.310 to 0.478. The metabolism of nirmatrelvir was qualitatively similar in liver microsomes and hepatocytes from rats, monkeys, and humans; prominent metabolites arose via cytochrome P450 (CYP450)-mediated oxidations on the P1 pyrrolidinone ring, P2 6,6-dimethyl-3-azabicyclo[3.1.0]hexane, and the tertiary-butyl group at the P3 position. Reaction phenotyping studies in human liver microsomes revealed that CYP3A4 was primarily responsible (fraction metabolized = 0.99) for the oxidative metabolism of nirmatrelvir. Minor clearance mechanisms involving renal and biliary excretion of unchanged nirmatrelvir were also noted in animals and in sandwich-cultured human hepatocytes. Nirmatrelvir was a reversible and time-dependent inhibitor as well as inducer of CYP3A activity in vitro. First-in-human pharmacokinetic studies have demonstrated a considerable boost in the oral systemic exposure of nirmatrelvir upon coadministration with the CYP3A4 inhibitor ritonavir, consistent with the predominant role of CYP3A4 in nirmatrelvir metabolism. SIGNIFICANCE STATEMENT: The manuscript describes the preclinical disposition, metabolism, and drug-drug interaction potential of PF-07321332 (nirmatrelvir), an orally active peptidomimetic-based inhibitor of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3CL protease, which has been granted emergency use authorization by multiple regulatory agencies around the globe for the treatment of coronavirus disease 2019 (COVID-19) in COVID-19-positive adults and pediatric patients who are at high risk for progression to severe COVID-19, including hospitalization or death.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Administração Oral , Animais , Criança , Citocromo P-450 CYP3A/metabolismo , Haplorrinos , Humanos , Lactamas , Leucina , Microssomos Hepáticos/metabolismo , Nitrilas , Peptídeo Hidrolases/metabolismo , Prolina , Ratos , Ritonavir/metabolismo
7.
J Med Chem ; 63(20): 11585-11601, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32678591

RESUMO

The replacement of one chemical motif with another that is broadly similar is a common method in medicinal chemistry to modulate the physical and biological properties of a molecule (i.e., bioisosterism). In recent years, bioisosteres such as cubane and bicyclo[1.1.1]pentane (BCP) have been used as highly effective phenyl mimics. Herein, we show the successful incorporation of a range of phenyl bioisosteres during the open-source optimization of an antimalarial series. Cubane (19) and closo-carborane (23) analogues exhibited improved in vitro potency against Plasmodium falciparum compared to the parent phenyl compound; however, these changes resulted in a reduction in metabolic stability; unusually, enzyme-mediated oxidation was found to take place on the cubane core. A BCP analogue (22) was found to be equipotent to its parent phenyl compound and showed significantly improved metabolic properties. While these results demonstrate the utility of these atypical bioisosteres when used in a medicinal chemistry program, the search to find a suitable bioisostere may well require the preparation of many candidates, in our case, 32 compounds.


Assuntos
Antimaláricos/síntese química , Compostos de Boro/química , Compostos Bicíclicos com Pontes/síntese química , Desenho de Fármacos , Antimaláricos/química , Antimaláricos/farmacologia , Antimaláricos/toxicidade , Compostos Bicíclicos com Pontes/química , Compostos Bicíclicos com Pontes/farmacologia , Compostos Bicíclicos com Pontes/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Células Hep G2 , Humanos , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos
8.
J Med Chem ; 63(13): 7268-7292, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32462865

RESUMO

An experimental approach is described for late-stage lead diversification of frontrunner drug candidates using nanomole-scale amounts of lead compounds for structure-activity relationship development. The process utilizes C-H bond activation methods to explore chemical space by transforming candidates into newly functionalized leads. A key to success is the utilization of microcryoprobe nuclear magnetic resonance (NMR) spectroscopy, which permits the use of low amounts of lead compounds (1-5 µmol). The approach delivers multiple analogues from a single lead at nanomole-scale amounts as DMSO-d6 stock solutions with a known structure and concentration for in vitro pharmacology and absorption, distribution, metabolism, and excretion testing. To demonstrate the feasibility of this approach, we have used the antihistamine agent loratadine (1). Twenty-six analogues of loratadine were isolated and fully characterized by NMR. Informative SAR analogues were identified, which display potent affinity for the human histamine H1 receptor and improved metabolic stability.


Assuntos
Loratadina/análogos & derivados , Loratadina/farmacocinética , Relação Estrutura-Atividade , Animais , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dimetil Sulfóxido/química , Cães , Descoberta de Drogas/métodos , Antagonistas não Sedativos dos Receptores H1 da Histamina/química , Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacologia , Humanos , Ligação de Hidrogênio , Inativação Metabólica , Loratadina/química , Espectroscopia de Ressonância Magnética , Metaloporfirinas/química , Metaloporfirinas/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem , Distribuição Tecidual
9.
J Med Chem ; 63(12): 6387-6406, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32097005

RESUMO

At one time, biotransformation was a descriptive activity in pharmaceutical development, viewed simply as structural elucidation of drug metabolites, completed only once compounds entered clinical development. Herein, we present our strategic approach using structural elucidation to enable chemistry design/SAR development. The approach considers four questions that often present themselves to medicinal chemists optimizing their compounds for candidate selection: (1) What are the important clearance mechanisms that mediate the disposition of my molecule? (2) Can metabolic liabilities be modulated in a favorable way? (3) Does my compound undergo bioactivation to a reactive metabolite? (4) Do any of the metabolites possess activity, either on- or off-target? An additional question necessary to support compound development relates to metabolites in safety testing (MIST) and our approach also addresses this question. The value in structural elucidation is derived from its application to better design molecules, guide their clinical development, and underwrite patient safety.


Assuntos
Desenho de Fármacos , Desenvolvimento de Medicamentos , Descoberta de Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Metaboloma/efeitos dos fármacos , Preparações Farmacêuticas/química , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Humanos , Estrutura Molecular , Preparações Farmacêuticas/metabolismo , Relação Estrutura-Atividade
10.
Chem Res Toxicol ; 33(1): 211-222, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31538772

RESUMO

Enzalutamide and apalutamide are two androgen receptor inhibitors approved for the treatment of castration-resistant prostate cancer (CRPC) and nonmetastatic castration-resistant prostate cancer (nmCRPC), respectively. Apalutamide is associated with an increased incidence of skin rash above the placebo groups in the SPARTAN trial in nmCRPC and in the TITAN trial in metastatic castration-sensitive prostate cancer patients. On the contrary, the rate of skin rash across all clinical trials (including PROSPER [nmCRPC]) for enzalutamide is similar to the placebo. We hypothesized that the apalutamide-associated increased skin rash in patients could be linked to a structural difference. The 2-cyanophenyl and dimethyl moieties in enzalutamide are substituted in apalutamide with 2-cyanopyridine and cyclobutyl, respectively. In our evaluations, the 2-cyanopyridine moiety of apalutamide was chemically reactive with the thiol nucleophile glutathione, resulting in rearranged thiazoline products. Radiolabeled apalutamide, but not radiolabeled enzalutamide, was shown to react with mouse and human plasma proteins. Thiol nucleophiles decreased the extent of covalent binding to the model protein bovine serum albumin, whereas amine and alcohol nucleophiles had no effect, suggesting reactivity with cysteine of proteins. Subcutaneous administration of apalutamide dose dependently increased lymphocyte cellularity in draining lymph nodes in a mouse drug allergy model (MDAM). Enzalutamide, and its known analogue RD162 in which the cyanophenyl was retained but the dimethyl was replaced by cyclobutyl, demonstrated substantially less covalent binding activity and negative results in the MDAM assay. Collectively, these data support the hypothesis that the 2-cyanopyridine moiety in apalutamide may react with cysteine in proteins forming haptens, which may trigger an immune response, as indicated by the activity of apalutamide in the MDAM assay, which in turn may be leading to increased potential for skin rash versus placebo in patients in the SPARTAN and TITAN clinical trials.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos/farmacologia , Hipersensibilidade a Drogas , Feniltioidantoína/análogos & derivados , Tioidantoínas/farmacologia , Animais , Benzamidas , Modelos Animais de Doenças , Hipersensibilidade a Drogas/imunologia , Feminino , Hepatócitos/metabolismo , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Camundongos Endogâmicos C57BL , Nitrilas , Feniltioidantoína/farmacologia , Ligação Proteica
11.
Drug Metab Dispos ; 46(11): 1596-1607, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30158249

RESUMO

Colon microbiota-based drug metabolism has received little attention thus far in the process of drug development, whereas the role of gut microbiota in clinical safety and efficacy of drugs has become more clear. Many of these studies have been performed using animal studies, but the translational value of these data with respect to drug pharmacokinetics, efficacy, and safety is largely unknown. To investigate human colon microbiota-mediated drug metabolism, we applied a recently developed ex vivo fermentation screening platform, in which human colonic microbiota conditions are simulated. A set of 12 drugs (omeprazole, simvastatin, metronidazole, risperidone, sulfinpyrazone, sulindac, levodopa, dapsone, nizatidine, sulfasalazine, zonisamide, and acetaminophen) was incubated with human colon microbiota under strictly anaerobic conditions, and samples were analyzed using high-performance liquid chromatograph-UV-high-resolution mass spectrometry analysis. The human microbiota in the fermentation assay consisted of bacterial genera regularly encountered in human colon and fecal samples and could be reproducibly cultured in independent experiments over time. In addition, fully anaerobic culture conditions could be maintained for 24 hours of incubation. Five out of the 12 included drugs (sulfasalazine, sulfinpyrazone, sulindac, nizatidine, and risperidone) showed microbiota-based biotransformation after 24 hours of incubation in the ex vivo fermentation assay. We demonstrated that drug metabolites formed by microbial metabolism can be detected in a qualitative manner and that the data are in accordance with those reported earlier for in vivo metabolism. In conclusion, we present a research tool to investigate human colon microbiota-based drug metabolism that may be applied to enable translatability of microbiota-based drug metabolism.


Assuntos
Fermentação/fisiologia , Microbioma Gastrointestinal/fisiologia , Inativação Metabólica/fisiologia , Preparações Farmacêuticas/metabolismo , Adulto , Colo/metabolismo , Colo/microbiologia , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
J Med Chem ; 61(16): 7273-7288, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30036059

RESUMO

Studies on indole-3-carboxylic acid derivatives as direct activators of human adenosine monophosphate-activated protein kinase (AMPK) α1ß1γ1 isoform have culminated in the identification of PF-06409577 (1), PF-06885249 (2), and PF-06679142 (3) as potential clinical candidates. Compounds 1-3 are primarily cleared in animals and humans via glucuronidation. Herein, we describe the biosynthetic preparation, purification, and structural characterization of the glucuronide conjugates of 1-3. Spectral characterization of the purified glucuronides M1, M2, and M3 indicated that they were acyl glucuronide derivatives. In vitro pharmacological evaluation revealed that all three acyl glucuronides retained selective activation of ß1-containing AMPK isoforms. Inhibition of de novo lipogenesis with representative parent carboxylic acids and their respective acyl glucuronide conjugates in human hepatocytes demonstrated their propensity to activate cellular AMPK. Cocrystallization of the AMPK α1ß1γ1 isoform with 1-3 and M1-M3 provided molecular insights into the structural basis for AMPK activation by the glucuronide conjugates.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Indóis/química , Indóis/metabolismo , Lipogênese/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/química , Animais , Células Cultivadas , Cristalização/métodos , Ativação Enzimática/efeitos dos fármacos , Glucuronídeos/química , Glucuronídeos/metabolismo , Glucuronídeos/farmacocinética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Indóis/farmacologia , Macaca fascicularis , Espectroscopia de Ressonância Magnética , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ratos Wistar , Uridina Difosfato Ácido Glucurônico/farmacologia
13.
Bioorg Med Chem Lett ; 28(11): 2068-2073, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29716781

RESUMO

A facile method for late stage diversification of lead molecules for the M1 PAM program using biosynthesis is described. Liver microsomes from several species are screened to identify a high turnover system. Subsequent incubations using less than 1 mg of substrate generate nanomole quantities of drug metabolites that are purified, characterized by microcryoprobe NMR spectroscopy, and quantified to known concentrations to enable rapid biology testing. The late-stage diversification of lead compounds provides rapid SAR feedback to the medicinal chemistry design cycle.


Assuntos
Compostos Bicíclicos com Pontes/metabolismo , Cicloexanos/metabolismo , Compostos Heterocíclicos/metabolismo , Compostos Bicíclicos com Pontes/química , Cicloexanos/química , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/química , Espectroscopia de Ressonância Magnética , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
14.
J Med Chem ; 61(8): 3626-3640, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29601185

RESUMO

In this report, we describe a method whereby lead molecules can be converted into several new analogues each using liver microsomes. Less than one micromole of substrate is incubated with liver microsomes (mouse, rat, hamster, guinea pig, rabbit, dog, monkey, or human) to produce multiple products which are isolated and analyzed by quantitative cryomicroprobe NMR (qNMR) spectroscopy. The solutions from qNMR analysis were then used as stocks that were diluted into biochemical assays. Nine human phosphodiesterase-2 (PDE2) inhibitors yielded 36 new analogues. Products were tested for PDE2 inhibition, intrinsic clearance in human hepatocytes, and membrane permeability. Two of the products (2c and 4b) were 3-10× more potent than their respective parent compounds and also had improved metabolic stability. Others offered insights into structure-activity relationships. Overall, this process of using liver microsomes at a submicromole scale of substrate is a useful approach to rapid and cost-effective late-stage lead diversification.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Microssomos Hepáticos/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Animais , Linhagem Celular , Permeabilidade da Membrana Celular , Cricetinae , Cães , Feminino , Cobaias , Hepatócitos/metabolismo , Humanos , Macaca fascicularis , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Estrutura Molecular , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacocinética , Coelhos , Ratos , Relação Estrutura-Atividade
15.
Drug Metab Dispos ; 46(5): 493-502, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29475834

RESUMO

Maraviroc (MVC) is a CCR5 coreceptor antagonist indicated in combination with other antiretroviral agents for the treatment of CCR5-tropic human immunodefinciency virus-1 infection. In this study, the metabolism of MVC was investigated in human liver microsomes to delineate the relative roles of CYP3A4 and CYP3A5. MVC is metabolized to five hydroxylated metabolites, all of which were biosynthesized and identified using mass and NMR spectroscopy. The sites of metabolism were the 2- and 3-positions of the 4,4-difluorocyclohexyl moiety and the methyl of the triazole moiety. Absolute configurations were ultimately ascertained by comparison to authentic standards. The biosynthesized metabolites were used for quantitative in vitro experiments in liver microsomes using cyp3cide, a selective inactivator of CYP3A4. (1S,2S)-2-OH-MVC was the main metabolite representing approximately half of the total metabolism, and CYP3A5 contributed approximately 40% to that pathway in microsomes from CYP3A5*1/*1 donors. The other four metabolites were almost exclusively metabolized by CYP3A4. (1S,2S)-2-hydroxylation also correlated to T-5 N-oxidation, a CYP3A5-specific activity. These data are consistent with clinical pharmacokinetic data wherein CYP3A5 extensive metabolizer subjects showed a modestly lower exposure to MVC.


Assuntos
Cicloexanos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Triazóis/metabolismo , Cicloexanos/farmacocinética , Humanos , Hidroxilação/fisiologia , Cinética , Maraviroc , Microssomos Hepáticos/metabolismo , Oxirredução , Pirazóis/metabolismo , Pirazóis/farmacocinética , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Triazóis/farmacocinética
16.
ACS Med Chem Lett ; 9(2): 68-72, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29456790

RESUMO

Late-stage oxidation using liver microsomes was applied to phosphodiesterase 2 inhibitor 1 to reduce its clearance by cytochrome P450 enzymes, introduce renal clearance, and minimize the risk for victim drug-drug interactions. This approach yielded PF-06815189 (2) with improved physicochemical properties and a mixed metabolic profile. This example highlights the importance of C-H diversification methods to drug discovery.

17.
Drug Metab Dispos ; 45(7): 721-733, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28396527

RESUMO

In the search for novel bile acid (BA) biomarkers of liver organic anion-transporting polypeptides (OATPs), cynomolgus monkeys received oral rifampicin (RIF) at four dose levels (1, 3, 10, and 30 mg/kg) that generated plasma-free Cmax values (0.06, 0.66, 2.57, and 7.79 µM, respectively) spanning the reported in vitro IC50 values for OATP1B1 and OATP1B3 (≤1.7 µM). As expected, the area under the plasma concentration-time curve (AUC) of an OATP probe drug (i.v. 2H4-pitavastatin, 0.2 mg/kg) was increased 1.2-, 2.4-, 3.8-, and 4.5-fold, respectively. Plasma of RIF-dosed cynomolgus monkeys was subjected to a liquid chromatography-tandem mass spectrometry method that supported the analysis of 30 different BAs. Monkey urine was profiled, and we also determined that the impact of RIF on BA renal clearance was minimal. Although sulfated BAs comprised only 1% of the plasma BA pool, a robust RIF dose response (maximal ≥50-fold increase in plasma AUC) was observed for the sulfates of five BAs [glycodeoxycholate (GDCA-S), glycochenodeoxycholate (GCDCA-S), taurochenodeoxycholate, deoxycholate (DCA-S), and taurodeoxycholate (TDCA-S)]. In vitro, RIF (≤100 µM) did not inhibit cynomolgus monkey liver cytosol-catalyzed BA sulfation and cynomolgus monkey hepatocyte-mediated uptake of representative sulfated BAs (GDCA-S, GCDCA-S, DCA-S, and TDCA-S) was sodium-independent and inhibited (≥70%) by RIF (5 µM); uptake of taurocholic acid was sensitive to sodium removal (74% decrease) and relatively refractory to RIF (≤21% inhibition). We concluded that sulfated BAs may serve as sensitive biomarkers of cynomolgus monkey OATPs and that exploration of their utility as circulating human OATP biomarkers is warranted.


Assuntos
Ácidos e Sais Biliares/metabolismo , Biomarcadores/metabolismo , Macaca fascicularis/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Rifampina/farmacologia , Sulfatos/metabolismo , Animais , Linhagem Celular , Células HEK293 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Quinolinas/farmacologia
19.
Drug Metab Dispos ; 44(5): 634-46, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26921388

RESUMO

Replacement of hydrogen with fluorine is a useful drug design strategy when decreases in cytochrome P450 (P450) metabolic lability are needed. In this paper, a facile two-step method of inserting fluorine into metabolically labile sites of drug molecules is described that utilizes less than 1 mg of starting material and quantitative NMR spectroscopy to ascertain the structures and concentrations of products. In the first step, hydroxyl metabolites are biosynthesized using human P450 enzymes, and in the second step these metabolites are subjected to deoxyfluorination using diethylaminosulfur trifluoride (DAST). The method is demonstrated using midazolam, celecoxib, ramelteon, and risperidone as examples and CYP3A5, 2C9, 1A2, and 2D6 to catalyze the hydroxylations. The drugs and their fluoro analogs were tested for metabolic lability. 9-Fluororisperidone and 4'-fluorocelecoxib were 16 and 4 times more metabolically stable than risperidone and celecoxib, respectively, and 2-fluororamelteon and ramelteon were metabolized at the same rate. 1'-Fluoromidazolam was metabolized at the same rate as midazolam by CYP3A4 but was more stable in CYP3A5 incubations. The P450-catalyzed sites of metabolism of the fluorine-containing analogs were determined. Some of the metabolites arose via metabolism at the fluorine-substituted carbon, wherein the fluorine was lost to yield aldehydes. In summary, this method offers an approach whereby fluorine can be substituted in metabolically labile sites, and the products can be tested to determine whether an enhancement in metabolic stability was obtained.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Flúor/química , Preparações Farmacêuticas/química , Aldeídos/química , Celecoxib/química , Dietilaminas/química , Halogenação , Humanos , Hidroxilação , Indenos/química , Espectroscopia de Ressonância Magnética/métodos , Microssomos Hepáticos/metabolismo , Midazolam/química , Risperidona/química
20.
Bioanalysis ; 8(4): 259-64, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26853375

RESUMO

Boston Society's 11th Annual Applied Pharmaceutical Analysis conference, Hyatt Regency Hotel, Cambridge, MA, USA, 14-16 September 2015 The Boston Society's 11th Annual Applied Pharmaceutical Analysis (APA) conference took place at the Hyatt Regency hotel in Cambridge, MA, on 14-16 September 2015. The 3-day conference affords pharmaceutical professionals, academic researchers and industry regulators the opportunity to collectively participate in meaningful and relevant discussions impacting the areas of pharmaceutical drug development. The APA conference was organized in three workshops encompassing the disciplines of regulated bioanalysis, discovery bioanalysis (encompassing new and emerging technologies) and biotransformation. The conference included a short course titled 'Bioanalytical considerations for the clinical development of antibody-drug conjugates (ADCs)', an engaging poster session, several panel and round table discussions and over 50 diverse talks from leading industry and academic scientists.


Assuntos
Técnicas de Química Analítica , Descoberta de Drogas , Biotransformação , Regulamentação Governamental , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...