Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565971

RESUMO

Environmental concerns are driving interest in postpetroleum synthetic textiles produced from microbial and fungal sources. Bacterial cellulose (BC) is a promising sustainable leather alternative, on account of its material properties, low infrastructure needs and biodegradability. However, for alternative textiles like BC to be fully sustainable, alternative ways to dye textiles need to be developed alongside alternative production methods. To address this, we genetically engineer Komagataeibacter rhaeticus to create a bacterial strain that grows self-pigmenting BC. Melanin biosynthesis in the bacteria from recombinant tyrosinase expression achieves dark black coloration robust to material use. Melanated BC production can be scaled up for the construction of prototype fashion products, and we illustrate the potential of combining engineered self-pigmentation with tools from synthetic biology, through the optogenetic patterning of gene expression in cellulose-producing bacteria. With this study, we demonstrate that combining genetic engineering with current and future methods of textile biofabrication has the potential to create a new class of textiles.

2.
ACS Synth Biol ; 10(12): 3422-3434, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34767345

RESUMO

Bacteria proficient at producing cellulose are an attractive synthetic biology host for the emerging field of Engineered Living Materials (ELMs). Species from the Komagataeibacter genus produce high yields of pure cellulose materials in a short time with minimal resources, and pioneering work has shown that genetic engineering in these strains is possible and can be used to modify the material and its production. To accelerate synthetic biology progress in these bacteria, we introduce here the Komagataeibacter tool kit (KTK), a standardized modular cloning system based on Golden Gate DNA assembly that allows DNA parts to be combined to build complex multigene constructs expressed in bacteria from plasmids. Working in Komagataeibacter rhaeticus, we describe basic parts for this system, including promoters, fusion tags, and reporter proteins, before showcasing how the assembly system enables more complex designs. Specifically, we use KTK cloning to reformat the Escherichia coli curli amyloid fiber system for functional expression in K. rhaeticus, and go on to modify it as a system for programming protein secretion from the cellulose producing bacteria. With this toolkit, we aim to accelerate modular synthetic biology in these bacteria, and enable more rapid progress in the emerging ELMs community.


Assuntos
Celulose , Engenharia Genética , Celulose/genética , Clonagem Molecular , Plasmídeos/genética , Biologia Sintética
3.
Nat Commun ; 12(1): 5027, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413311

RESUMO

Engineered living materials (ELMs) based on bacterial cellulose (BC) offer a promising avenue for cheap-to-produce materials that can be programmed with genetically encoded functionalities. Here we explore how ELMs can be fabricated in a modular fashion from millimetre-scale biofilm spheroids grown from shaking cultures of Komagataeibacter rhaeticus. Here we define a reproducible protocol to produce BC spheroids with the high yield bacterial cellulose producer K. rhaeticus and demonstrate for the first time their potential for their use as building blocks to grow ELMs in 3D shapes. Using genetically engineered K. rhaeticus, we produce functionalized BC spheroids and use these to make and grow patterned BC-based ELMs that signal within a material and can sense and report on chemical inputs. We also investigate the use of BC spheroids as a method to regenerate damaged BC materials and as a way to fuse together smaller material sections of cellulose and synthetic materials into a larger piece. This work improves our understanding of BC spheroid formation and showcases their great potential for fabricating, patterning and repairing ELMs based on the promising biomaterial of bacterial cellulose.


Assuntos
Acetobacteraceae/crescimento & desenvolvimento , Bioengenharia/métodos , Biofilmes , Celulose/química , Engenharia Genética/métodos , Medicina Regenerativa/métodos , Acetobacteraceae/química , Acetobacteraceae/isolamento & purificação , Celulose/isolamento & purificação
4.
Int J Mol Sci ; 21(23)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276459

RESUMO

Synthetic biology is an advanced form of genetic manipulation that applies the principles of modularity and engineering design to reprogram cells by changing their DNA. Over the last decade, synthetic biology has begun to be applied to bacteria that naturally produce biomaterials, in order to boost material production, change material properties and to add new functionalities to the resulting material. Recent work has used synthetic biology to engineer several Komagataeibacter strains; bacteria that naturally secrete large amounts of the versatile and promising material bacterial cellulose (BC). In this review, we summarize how genetic engineering, metabolic engineering and now synthetic biology have been used in Komagataeibacter strains to alter BC, improve its production and begin to add new functionalities into this easy-to-grow material. As well as describing the milestone advances, we also look forward to what will come next from engineering bacterial cellulose by synthetic biology.


Assuntos
Bactérias/metabolismo , Celulose/metabolismo , Engenharia Metabólica , Biologia Sintética , Bactérias/genética , Materiais Biocompatíveis , Engenharia Genética , Engenharia Metabólica/métodos , Biologia Sintética/métodos
5.
Microb Biotechnol ; 12(4): 611-619, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30461206

RESUMO

Bacterial cellulose is a strong and flexible biomaterial produced at high yields by Acetobacter species and has applications in health care, biotechnology and electronics. Naturally, bacterial cellulose grows as a large unstructured polymer network around the bacteria that produce it, and tools to enable these bacteria to respond to different locations are required to grow more complex structured materials. Here, we introduce engineered cell-to-cell communication into a bacterial cellulose-producing strain of Komagataeibacter rhaeticus to enable different cells to detect their proximity within growing material and trigger differential gene expression in response. Using synthetic biology tools, we engineer Sender and Receiver strains of K. rhaeticus to produce and respond to the diffusible signalling molecule, acyl-homoserine lactone. We demonstrate that communication can occur both within and between growing pellicles and use this in a boundary detection experiment, where spliced and joined pellicles sense and reveal their original boundary. This work sets the basis for synthetic cell-to-cell communication within bacterial cellulose and is an important step forward for pattern formation within engineered living materials.


Assuntos
Acetobacteraceae/metabolismo , Acil-Butirolactonas/metabolismo , Celulose/metabolismo , Percepção de Quorum , Acetobacteraceae/genética , Acetobacteraceae/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
6.
Microbiologyopen ; 7(3): e00567, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29250936

RESUMO

Rhizobium sp. str. NT-26 is a Gram-negative facultative chemolithoautotrophic arsenite oxidizer that has been used as a model organism to study various aspects of arsenite oxidation including the regulation of arsenite oxidation. The three regulatory genes, aioX, aioS, and aioR, are cotranscribed when NT-26 was grown in the presence or absence of arsenite. The aioXSR operon is upregulated in stationary phase but not by the presence of arsenite in the growth medium. The two transcription start sites upstream of aioX were determined which led to the identification of two promoters, the housekeeping promoter RpoD and the growth-phase-dependent promoter RpoE2. Promoter-lacZ fusions confirmed their constitutive and stationary phase expressions. The involvement of the NT-26 sigma factor RpoE2 in acting on the NT-26 RpoE2 promoter was confirmed in vivo in Escherichia coli, which lacks a rpoE2 homolog, using a strain carrying both the promoter-lacZ fusion and the NT-26 rpoE2 gene. An in silico approach was used to search for other RpoE2 promoters and AioR-binding motifs and led to the identification of other genes that could be regulated by these proteins including those involved in quorum sensing, chemotaxis, and motility expanding the signaling networks important for the microbial metabolism of arsenite.


Assuntos
Arsenitos/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Regiões Promotoras Genéticas , Rhizobium/genética , Rhizobium/metabolismo , Clonagem Molecular , Biologia Computacional , Meios de Cultura/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Genes Reguladores , Oxirredução , Sítio de Iniciação de Transcrição
7.
Biochem J ; 474(13): 2203-2217, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28533266

RESUMO

Collagen adopts a characteristic supercoiled triple helical conformation which requires a repeating (Xaa-Yaa-Gly)n sequence. Despite the abundance of collagen, a combined experimental and atomistic modelling approach has not so far quantitated the degree of flexibility seen experimentally in the solution structures of collagen triple helices. To address this question, we report an experimental study on the flexibility of varying lengths of collagen triple helical peptides, composed of six, eight, ten and twelve repeats of the most stable Pro-Hyp-Gly (POG) units. In addition, one unblocked peptide, (POG)10unblocked, was compared with the blocked (POG)10 as a control for the significance of end effects. Complementary analytical ultracentrifugation and synchrotron small angle X-ray scattering data showed that the conformations of the longer triple helical peptides were not well explained by a linear structure derived from crystallography. To interpret these data, molecular dynamics simulations were used to generate 50 000 physically realistic collagen structures for each of the helices. These structures were fitted against their respective scattering data to reveal the best fitting structures from this large ensemble of possible helix structures. This curve fitting confirmed a small degree of non-linearity to exist in these best fit triple helices, with the degree of bending approximated as 4-17° from linearity. Our results open the way for further studies of other collagen triple helices with different sequences and stabilities in order to clarify the role of molecular rigidity and flexibility in collagen extracellular and immune function and disease.


Assuntos
Colágeno/química , Colágeno/metabolismo , Fragmentos de Peptídeos/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...